

OnCommand Unified Manager Guide to Common Provisioning and Data Protection Workflows For 7-Mode for Use with Core Package 5.1

Contents

Preface	8
Supported features	8
Websites	8
Getting information, help, and service	8
Before you call	9
Using the documentation	9
Hardware service and support	9
Firmware updates	10
How to send your comments	10
Introduction to provisioning and protection	. 11
What the N series Management Console provisioning capability is	
What the N series Management Console data protection capability is	12
Management Console and the OnCommand console	12
Data management concepts	13
What datasets are	13
What policies are	14
What resource pools are	14
What aggregate overcommitment is	15
What vFiler units are (7-Mode only)	15
What storage services are	16
Credentials	16
Policies, consistency, and conformance	16
Simplified data and resource management	17
Organize and manage data using datasets	17
Protection of discovered data	18
The Management Console automated provisioning for secondary storage.	18
The N series Management Console provisioning capability	19
Dataset and vFiler unit migration	19
Efficient change implementation	20
Provisioning and protection monitoring	21
End-to-end status monitoring	21
Dashboards for high-level monitoring	21

	Disaster recovery concepts	22
	What disaster recovery protection is	22
	Disaster recovery terminology	22
	Standard protection or disaster recovery protection of datasets	24
	Deduplication support	25
	What deduplication allows	25
	What happens during deduplication	26
	How RBAC is used	26
SAN	resource provisioning example workflow	27
	Plan to implement SAN resource provisioning	27
	SAN provisioning example setup	27
	Develop a SAN provisioning strategy	28
	SAN provisioning example assumptions	30
	Configure the storage system to host the vFiler unit	33
	Create a resource pool	34
	Create a vFiler template	35
	Create a vFiler unit	36
	Create a SAN provisioning policy	38
	Create a dataset and provision a LUN	39
Data	set offline migration example workflow	41
	Plan to implement offline migration	41
	Dataset offline migration example setup	41
	Develop a dataset offline migration strategy	42
	Dataset offline migration example assumptions	43
	Add a physical resource to the resource pool	45
	Start the dataset offline migration	45
	Update the migration SnapMirror relationships	46
	Cut over to the new dataset storage destination	47
	Clean up the dataset offline migration	48
	Manually delete old IPspace and VLAN	
Data	set online migration example workflow	50
	Plan to implement online migration	50
	Dataset online migration example setup	50
	Dataset online migration example assumptions	51
	Add a physical resource as the online migration destination	
	Start the dataset online migration and automated cutover	54

Roll back a dataset online migration (optional)	56
Clean up the dataset online migration	57
Manually finish online migration cleanup	58
Protection example workflow	59
Plan to implement data protection	59
Protection example setup	59
Develop a protection strategy	60
Protection example assumptions	61
Configure the host storage systems	64
Create the resource pools	66
Evaluate and modify the protection schedules	68
Determine the schedule for the primary data node	68
Determine the schedule for the connection between the primary and	
backup nodes	69
Determine the schedule for the connection between the backup and	
mirror nodes	70
Create the protection policy and modify the settings	71
Evaluate the primary data node	72
Evaluate the connection between the primary and backup nodes	74
Evaluate the backup node	75
Evaluate the connection between the backup and mirror nodes	76
Create groups	78
Create datasets	80
Assign the protection policy to the datasets	81
Import discovered relationships	82
Verify the protection of the dataset	83
Configure alarms	84
NAS resource provisioning and data protection example workflow	85
Plan to implement NAS provisioning and protection	85
NAS provisioning and protection example setup	85
Develop a NAS provisioning strategy	86
Develop a protection strategy	87
NAS provisioning and protection example assumptions	88
Configure the hosts	90
Create the resource pools	92
Create provisioning policies	93

Completing the provisioning and protection example workflow	95
Disaster recovery example workflow	96
Plan to implement disaster recovery capability	96
Disaster recovery protection example setup	96
Develop a disaster recovery strategy	97
Disaster recovery protection example assumptions	98
Configure the hosts for disaster recovery protection	99
Create the resource pools	100
Create a failover script	101
Create the disaster recovery protection policy	104
Create the disaster recovery-capable dataset	106
Assign the disaster recovery protection policy to the datasets	107
Verify the disaster recovery protection of the dataset	108
Test the failover script	109
Perform an unscheduled update	110
Fail over to the disaster recovery node	110
Prepare for recovery after a disaster	111
Manual failback using the command-line interface	112
Storage services configuration and attachment example workflow	. 115
Plan to implement storage services protection	115
Example storage services offerings	115
Storage services configuration assumptions	117
Create the "Gold_level" storage service	119
Create the "Silver_level" storage service	120
Create the "Bronze_level" storage service	121
Create a dataset using the "Gold_level" storage service	122
Attach the "Silver_level" storage service to an existing dataset	124
Create multiple datasets using the "Bronze_level" storage service	125
Combined N series Management Console protection capability and	
SnapManager database protection example workflow	. 129
Plan to implement combined database protection	130
Protected database backup	130
Details of the target database	130
Primary and secondary storage configuration and topology	131
Backup schedule and retention strategy	134
Workflow summary for database protected backup	135

Protected backup configuration and execution	36
Use the N series Management Console data protection capability to configure a	
secondary resource pool	37
Use the N series Management Console data protection capability to configure	
secondary backup schedules	38
Use the N series Management Console data protection capability to configure a	
secondary backup protection policy	39
Use SnapManager for Oracle to create the database profile and assign a	
protection policy	41
Use the N series Management Console data protection capability to provision	
the new dataset	43
Use SnapManager for Oracle to create a protected backup	44
Use SnapManager for Oracle to confirm backup protection	45
Use SnapManager for Oracle to restore backups from secondary storage	45
Administrator roles and capabilities14	1 7
List of events and severity types14	1 9
Copyright information17	74
Trademark information17	75
Index17	78

Preface

Supported features

IBM System Storage N series storage systems are driven by NetApp Data ONTAP software. Some features described in the product software documentation are neither offered nor supported by IBM. Please contact your local IBM representative or reseller for further details.

Information about supported features can also be found on the N series support website (accessed and navigated as described in *Websites* on page 8).

Websites

IBM maintains pages on the World Wide Web where you can get the latest technical information and download device drivers and updates. The following web pages provide N series information:

- A listing of currently available N series products and features can be found at the following web page:
 - www.ibm.com/storage/nas/
- The IBM System Storage N series support website requires users to register in order to obtain
 access to N series support content on the web. To understand how the N series support web
 content is organized and navigated, and to access the N series support website, refer to the
 following publicly accessible web page:
 - www.ibm.com/storage/support/nseries/
 - This web page also provides links to AutoSupport information as well as other important N series product resources.
- IBM System Storage N series products attach to a variety of servers and operating systems. To
 determine the latest supported attachments, go to the IBM N series interoperability matrix at the
 following web page:
 - www.ibm.com/systems/storage/network/interophome.html
- For the latest N series hardware product documentation, including planning, installation and setup, and hardware monitoring, service and diagnostics, see the IBM N series Information Center at the following web page:
 - publib.boulder.ibm.com/infocenter/nasinfo/nseries/index.jsp

Getting information, help, and service

If you need help, service, or technical assistance or just want more information about IBM products, you will find a wide variety of sources available from IBM to assist you. This section contains

information about where to go for additional information about IBM and IBM products, what to do if you experience a problem with your IBM N series product, and whom to call for service, if it is necessary.

Before you call

Before you call, make sure you have taken these steps to try to solve the problem yourself:

- Check all cables to make sure they are connected.
- Check the power switches to make sure the system is turned on.
- Use the troubleshooting information in your system documentation and use the diagnostic tools that come with your system.
- Refer to the N series support website (accessed and navigated as described in *Websites* on page 8) for information on known problems and limitations.

Using the documentation

The latest versions of N series software documentation, including Data ONTAP and other software products, are available on the N series support website (accessed and navigated as described in *Websites* on page 8).

Current N series hardware product documentation is shipped with your hardware product in printed documents or as PDF files on a documentation CD. For the latest N series hardware product documentation PDFs, go to the N series support website.

Hardware documentation, including planning, installation and setup, and hardware monitoring, service, and diagnostics, is also provided in an IBM N series Information Center at the following web page:

publib.boulder.ibm.com/infocenter/nasinfo/nseries/index.jsp

Hardware service and support

You can receive hardware service through IBM Integrated Technology Services. Visit the following web page for support telephone numbers:

www.ibm.com/planetwide/

Firmware updates

IBM N series product firmware is embedded in Data ONTAP. As with all devices, ensure that you run the latest level of firmware. Any firmware updates are posted to the N series support website (accessed and navigated as described in *Websites* on page 8).

Note: If you do not see new firmware updates on the N series support website, you are running the latest level of firmware.

Verify that the latest level of firmware is installed on your machine before contacting IBM for technical support.

How to send your comments

Your feedback helps us to provide the most accurate and high-quality information. If you have comments or suggestions for improving this document, please send them by email to *starpubs@us.ibm.com*.

Be sure to include the following:

- Exact publication title
- Publication form number (for example, GC26-1234-02)
- Page, table, or illustration numbers
- A detailed description of any information that should be changed

Introduction to provisioning and protection

This chapter describes the functionality of the N series Management Console data protection and provisioning capabilities of Management Console.

It describes the data-management objects the provisioning and protection capabilities use and how these objects can be used to help you protect your data and provision your resources easily and efficiently.

The N series Management Console data protection and provisioning capabilities can be installed on Linux-based or Windows-based systems.

You can view more information about provisioning and protection concepts and tasks in the Management Console Help.

What the N series Management Console provisioning capability is

The N series Management Console provisioning capability simplifies and automates the tasks of provisioning and managing storage for NAS and SAN access, and it improves efficiency in storage utilization.

The N series Management Console provisioning capability is used in conjunction with DataFabric Manager. The N series Management Console provisioning capability is supported on Management Console, which is the client platform for IBM N series applications.

The N series Management Console provisioning capability provides the following capabilities:

- User-defined policies to automate storage provisioning and configure default settings for exporting storage
- Periodic conformance checking to ensure the provisioned storage conforms to the provisioning policy
- Manual controls for resizing space and capacity of existing storage
- Manual controls for provisioning new and existing storage
- Offline and online automated migration of data to new storage systems
- Storage services support that enables you to create a variety of preconfigured bundles of
 provisioning policies, protection policies, resource pools, and templates for vFiler unit
 attachment, from which you can select and quickly assign to a set of data in accordance with that
 data's provisioning and protection needs

Anyone using the N series Management Console provisioning capability should be familiar with general storage provisioning concepts.

What the N series Management Console data protection capability is

The N series Management Console data protection capability helps you manage your backup and mirror relationships and perform failover operations easily and efficiently by eliminating repetitive tasks and automating some tasks.

Typically, data and resource management is time consuming because it involves manual analysis and management of storage capacity, network bandwidth, schedules, retention policies, and other infrastructure variables. The N series Management Console data protection capability simplifies this work by employing configuration policies, convenient wizards, and automated verification of certain aspects of the data protection configuration. It enables you to launch a backup, restore, or failover operation with a single click.

The N series Management Console data protection capability can perform the following actions:

- Use policies to manage primary data, storage, and backup and mirror relationships.
- Manage local and remote backups and mirror copies.
- Discover external SnapVault and SnapMirror relationships, report on external relationship lags, and import external relationships.
- Provision the secondary storage for backups and mirrored copies based on policies you assign.
- Enable disaster recovery capability.
- Automatically validate your backup and disaster recovery configuration with a conformance checker.

Anyone using the N series Management Console data protection capability should be familiar with general data protection and disaster recovery concepts. The N series Management Console data protection capability uses Data ONTAP data protection technologies, such as Snapshot copies, SnapVault, Open Systems SnapVault, and SnapMirror.

Management Console and the OnCommand console

You can use the protection and provisioning capabilities of the Management Console in combination with the OnCommand console to manage protection of both physical storage objects (such as aggregates, volumes, and qtrees) and virtual objects (such as VMware virtual machines, VMware data stores, VMware datacenters, and Hyper-V virtual machines).

Management Console

Management Console enables you to configure, display, and manage datasets that contain physical storage objects.

Within Management Console, you can also display datasets of virtual objects, but you configure and manage of those datasets and virtual objects using the OnCommand console.

The OnCommand console

The OnCommand console enables you to configure, display, and manage datasets that support the protection and provisioning of virtual objects.

Within the OnCommand console, you can also display datasets of physical storage objects, but you configure and manage of those datasets and physical storage objects using Management Console.

Data management concepts

It is helpful to have a basic understanding of some concepts that apply to provisioning and protection activities in Management Console.

What datasets are

In the simplest terms, a *dataset* is a collection of user data that you manage as a single unit, plus all of the replicas of that data. The data is identified by the volume, gtree, or directory in which it is located.

A dataset consists of a primary node and possibly a secondary and tertiary node:

- The primary node exists in all datasets. It stores the original data that is managed by the N series Management Console data protection and provisioning capabilities.
- A secondary node exists in datasets in which the N series Management Console data protection capability provides separate backup or mirror storage for data stored on the primary node. The secondary node is also called the backup node, the mirror node, or the disaster recovery node, depending on the type of protection provided.
- A tertiary node exists in datasets in which the N series Management Console data protection capability provides backup or mirror storage for data on the secondary node.

Because you manage a dataset as a single unit, its members should have common management requirements. With the N series Management Console data protection capability, members of a dataset should share the same data-protection requirements. With the N series Management Console provisioning capability, each node in a dataset might not share the same provisioning requirements, but all members of each node should share the same provisioning requirements.

For example, different types of data supporting the same application would probably share the protection requirements of the application. You would want to collect that data in the same dataset, even if the data were stored in different volumes or qtrees. By configuring protection appropriate for the application the data supports and applying that protection to the dataset, you apply it to all the dataset members.

For provisioning, if a dataset had a protection policy that created primary, backup, and mirror nodes, your provisioning requirements for each node might be different. You might want to provision the primary node on high-availability storage but provision the mirror node on less expensive, lowavailability storage.

What policies are

A *policy* is a set of rules that specifies the intended management of dataset members. You can apply the same policy to multiple datasets, leveraging your configuration of the policy across the datasets. If you update a policy, the update is propagated across all the datasets to which the policy is applied.

From the Management Console, you can use the following policies to quickly implement changes across an entire organization:

· Protection policies

A protection policy defines when data copies used for backups and mirror copies are created on the primary storage, when to transfer the copies, and what is the maximum amount of data to transfer at scheduled times. The protection policy settings define how long to retain copies at each backup location and the warning and error thresholds for lag time. You cannot override a policy for specific members of a dataset; if some members of a dataset require different policy parameters, you need to move those members to a different dataset.

Disaster recovery policies

A protection policy that supports failover from a primary to a secondary node is considered to be capable of disaster recovery. The disaster recovery node is always directly connected to the primary node, and its storage is made available after a disaster.

· Provisioning policies

A provisioning policy defines how you want to have storage provisioned, exported, and managed, and what your space requirements are. For example, a provisioning policy might specify that when a storage container reaches the Nearly Full or Full threshold, an event message is sent or the size of the volume is increased (which provides more space for all the qtrees in the volume). A provisioning policy applies to all volumes, qtrees, or LUNs in a dataset node. You cannot assign different provisioning policies to individual members within a dataset. If the dataset has a mirror or backup node, you can create and assign a different policy that defines provisioning and storage management on a secondary and tertiary node.

What resource pools are

A *resource pool* is a collection of unused physical storage (such as storage systems or aggregates) from which new volumes or LUNs can be provisioned to contain data. If you assign a storage system to a resource pool, all aggregates on that storage system become available for provisioning.

Any unused physical resource in a resource pool is potentially eligible for provisioning. You can organize physical resources into resource pools by location, performance, or other important factors.

The N series Management Console data protection and provisioning capabilities automatically provision volumes or LUNs to meet the necessary requirements for compatible software version, licensing, and available space.

With the N series Management Console data protection capability, you assign a resource pool to the backup and mirror destinations of a dataset. The N series Management Console data protection capability can then automatically provision volumes out of the physical resources in the resource

pool to contain backups and mirror copies. To prevent conflicts, physical storage assigned to one resource pool cannot be assigned to a second resource pool.

With the N series Management Console provisioning capability, you can use resource pools to fulfill requests for storage space for the primary or secondary data of a dataset. By applying a provisioning policy to a dataset node, the N series Management Console provisioning capability applies the resiliency characteristics and space settings in the policy to automatically select the resources needed to fulfill a provisioning request.

What aggregate overcommitment is

You can increase the size of a volume to be larger than its containing aggregate, which is referred to as aggregate overcommitment or thin provisioning.

Aggregate overcommitment provides flexibility to the storage provider. By using aggregate overcommitment, you can appear to provide more storage than is actually available from a given aggregate.

Using aggregate overcommitment could be useful if you are asked to provide greater amounts of storage than you know will be used immediately. Additionally, if you have several volumes that sometimes need to grow temporarily, the volumes can dynamically share the available space with each other.

The volume size is not limited by the aggregate size. In fact, each volume could, if required, be larger than the containing aggregate. The storage provided by the aggregate is consumed only as LUNs are created or data is appended to files in the volumes.

To use aggregate overcommitment, you must initially create your aggregates with the proper space guarantee settings. This can be done by using Data ONTAP commands. See the Data ONTAP 7-Mode Storage Management Guide for details.

You can set the aggregate overcommitment thresholds by using the Add Resource Pool wizard or the Properties sheet on the Resource Pools window.

What vFiler units are (7-Mode only)

A vFiler unit is a partition of a storage system and the associated network resources. Each vFiler partition appears to the user as a separate storage system on the network and functions as a storage system.

Access to vFiler units can be restricted so that an administrator can manage and view files only on an assigned vFiler unit, not on other vFiler units that reside on the same storage system. In addition, there is no data flow between vFiler units. When using vFiler units, you can be sure that no sensitive information is exposed to other administrators or users who store data on the same storage system.

You can assign volumes or LUNs to vFiler units in Management Console. You can create up to 65 vFiler units on a storage system.

To use vFiler units you must have the MultiStore software licensed on the storage system that is hosting the vFiler units.

You can use vFiler templates to simplify creation of vFiler units. You create a template by selecting a set of vFiler configuration settings, including CIFS, DNS, NIS, and administration host information. You can configure as many vFiler templates as you need.

What storage services are

Storage services are combinations of protection policies, provisioning policies, resource pools, and vFiler templates (for vFiler unit creation and attachment) that you can preconfigure and then apply as package to different datasets with different storage needs.

For example, a corporation's two types of storage needs could be supported by two different storage services.

- A corporation's employee work directory storage needs might be adequately supported by Storage Service Package A, which includes the following:
 - A simple primary to secondary storage backup protection policy, carried out once a day.
 - Primary storage with a provisioning policy that specifies mid-range performance and with a resource pool containing sufficient numbers of those to meet the provisioning need.
 - Secondary storage with a provisioning policy specifying high storage capacity low-end
 performance storage units and with a resource pool containing sufficient numbers of those
 units to meet the provisioning need.
- That corporation's commercial transaction data, on the other hand might require Storage Service Package Z, which includes the following:
 - A disaster-recovery capable mirror protection policy, carried out hourly to one site.
 - The primary site and mirror site with a provisioning policy that specifies high-performance capable of functioning as primary in an emergency and with a resource pools that contain the physical resources to fulfill those provisioning needs.
 - Regular but frequent backup from the mirror site to a tertiary backup site.

Credentials

The host login and Network Data Management Protocol (NDMP) credentials must be properly set on DataFabric Manager for each host you are using.

The host login credentials are the user name and password that DataFabric Manager uses to log in to the host

The NDMP login credentials are the user name and password that DataFabric Manager uses to communicate with the host over NDMP. DataFabric Manager automatically manages the password based on the user name provided.

For vFiler units, DataFabric Manager uses the login and NDMP credentials of the system that is hosting the vFiler unit.

Policies, consistency, and conformance

All organizations have requirements that specify how frequently you must back up data and how long you must keep backup copies of data. The N series Management Console data protection capability

provides policy-based protection and storage services packaging; these provide consistency and, therefore, conformance predictability.

When using traditional data-protection methods in an enterprise environment, there is always the danger that inconsistent deployment or operator error might make data nonconformant with requirements. The consistency provided by the N series Management Console data protection capability enables you to focus on addressing other threats to data conformance, such as network outages.

After you assign a policy and resource pools to a dataset, the protection defined by that policy applies until you redefine the policy. System outages and other problems might temporarily interfere with protection, but if a policy is defined to meet certain requirements and the dataset conformance status is Conformant and its protection status is Protected (green), the protection defined in the policy is being achieved.

The policies you apply to datasets are also a statement of intent of how you plan to protect data in that dataset. In reviewing your data protection implementation, you can infer the protection requirements of data in a given dataset, because the policy applied to that dataset defines the protection intended to meet business requirements.

The storage services feature allows you to combine protection policies, provisioning policies, resource pools, and vFiler templates (for optional vFiler unit creation and attachment) into preconfigured packages that you can select and apply to datasets, making it even easier to provide appropriate, consistent, conformant protection and provisioning of your datasets.

Simplified data and resource management

The N series Management Console data protection and provisioning capabilities help you leverage your provisioning and protection strategies through the consolidated control of relationships, the use of policies and storage services, the automated provisioning of secondary storage, and the discovery of hosts and existing relationships.

Organize and manage data using datasets

Organizing data with the same provisioning or protection requirements into a dataset enables you to manage the data's provisioning and protection relationships as a single unit, leveraging each task across the membership.

With the N series Management Console data protection capability, managing protection relationships as a single unit means that each choice you make for the dataset is applied to the protection of each dataset member. These choices can include which protection policy best serves the data's restore or disaster recovery requirements, which schedule to use, which resource pool is appropriate for each node of the policy, and so on.

With the N series Management Console provisioning capability, each choice you make for the dataset node is applied to the provisioning of each volume, gtree, and LUN in the dataset node. These choices can include which provisioning policy best serves that node's provisioning and storage export requirements, which resource pool is appropriate for provisioning each dataset node, storage sizes for data and for Snapshot copies, and so on.

Datasets also decrease the number of factors you need to consider in developing a provisioning or protection strategy. Instead of having to track the specific requirements of each individual dataset member, you only need to evaluate which data and which resources share the same provisioning or protection requirements, add them to a dataset, and track them as a unit. After the dataset is created, deploying satisfactory provisioning or protection for the dataset results in deploying satisfactory provisioning or protection for each individual dataset member.

Protection of discovered data

When the N series Management Console data protection capability automatically detects new storage or hosts, what happens next depends on whether the data is protected by a policy.

If the data is unprotected, the N series Management Console data protection capability reports the data in the dashboard. From the Unprotected Data panel, you can drill down to find detailed information that helps you decide whether to back up and mirror the data.

If new data is created in volumes, qtrees, or directories on a storage system, Open Systems SnapVault client, vFiler unit, or aggregate that is already protected, that protection is extended automatically to the new data. For example, if you create a FlexVol volume on a storage system that is a member of a protected dataset, the protection configured for that dataset is applied automatically to the data in the new FlexVol volume. The N series Management Console data protection capability creates backup and mirror relationships for the new data, as defined in the policy applied to the dataset, and provisions storage on the destination systems for copies of the new data.

Automatically protecting new data created on protected hosts and aggregates decreases the risk of new data going unprotected until its presence is detected.

The Management Console automated provisioning for secondary storage

The N series Management Console data protection and provisioning capabilities automatically provisions secondary storage, saving you considerable time and effort.

One of the most time-consuming and complicated aspects of a traditional data protection implementation is provisioning storage for backups and mirror copies. There are many factors that you must consider when looking for a suitable destination for copies of protected data, and you must repeat the process for each relationship in your overall protection strategy.

The N series Management Console data protection and provisioning capabilities automatically provisions volumes for backups and mirror copies, as needed, out of the resource pool assigned to each node in a protection policy to ensure that the volumes provisioned for your backups and mirror copies meet your data protection needs.

For example, you could leverage the automated provisioning feature to simplify your resource pools. For each geographic site in your protection plan, you could create two resource pools for backups:

• A Gold-level resource pool for backups of business-critical data, containing physical resources that can support the more rigorous restore requirements of that data

• A resource pool for backups of all the other data you need to protect, containing every other physical resource at the site

You would assign the Gold-level resource pool to the backup node of datasets containing businesscritical data. You would assign the other resource pool to the backup node of the other datasets. The N series Management Console data protection and provisioning capabilities automated provisioning would then create secondary volumes for the backups from the resource pools. The provisioned secondary volumes support the restore requirements of the data, because the most appropriate volumes were selected or created and the resource pools were populated with physical resources suited to the task.

The N series Management Console provisioning capability

When you create a dataset for provisioning, you can assign a provisioning policy that provides settings for automatically configuring storage for the dataset. You can also manually manage volumes or LUNs in a dataset, and their individual export protocols, by using the Provisioning wizard.

You can provision volumes, gtrees, or LUNs on the primary, backup, and mirror dataset nodes.

When a storage container runs out of space, the actions taken are determined by the provisioning policy. The N series Management Console provisioning capability might send space warning messages and delete old Snapshot copies, or for SAN storage, might try to increase the container size.

The N series Management Console provisioning capability provisions volumes and gtrees (in NAS environments) or volumes and LUNs (in SAN environments) from the resource pool assigned to the dataset.

Dataset and vFiler unit migration

If a vFiler unit or a dataset that is totally provisioned through a vFiler unit needs more storage, you can automatically migrate it offline or online to another, larger storage system.

If all of the data in a dataset is exported through a single vFiler unit, the N series Management Console provisioning capability provides controls for migrating the dataset and the vFiler unit.

The migration is automated, which means that the N series Management Console provisioning capability automatically migrates the dataset and vFiler unit configurations without the need for the storage administrator to resort to storage system command lines.

The migration can be offline or online.

- Offline migration means that during one phase of the migration the migrated data must be offline, temporarily unavailable to the users who normally access it. During that time the applications that access it must be shut down. To minimize the disruption to data users, the storage administrator can perform the offline phase of the migration during a period of minimum data usage.
- Online migration means that all phases of the migration the migrating data is always online and available to the users and applications that normally access it.

You can migrate a dataset only if all of the storage for the dataset is in one vFiler unit. In addition, that vFiler unit must contain all of the volumes for the dataset.

Offline migration also permits the migrated dataset to include the root volume or root qtree.

Online migration also permits the migrated dataset to include the root volume.

You migrate a dataset when your storage strategy is focused on datasets; you migrate a vFiler unit when your storage strategy is focused on vFiler units. When you create a dataset, you can specify an existing vFiler unit or you can have the N series Management Console provisioning capability create a new vFiler unit for the dataset.

The N series Management Console provisioning capability automatically performs the migration and relationships do not need to be rebaselined.

Efficient change implementation

By consolidating your provisioning and protection components into datasets, policies, and resource pools, you have fewer items to keep up to date. If business requirements change, there are fewer items you need to modify to support that change, so you can implement changes much more efficiently than by using traditional provisioning and data protection methods.

For example, if you had a dataset of 500 qtrees that frequently missed its backup window, you might choose to start the backups earlier. Using traditional data protection methods, you would have to update each of the 500 backup relationships manually or create a script to update the relationships.

Using the N series Management Console data protection capability, you would update the 500 relationships by modifying one schedule—the schedule assigned to the connection between the primary data and the backup node in the policy applied to the dataset. After you modified the schedule, the N series Management Console data protection capability would update the schedule on each policy to which the schedule was assigned. The change would then be propagated to all the datasets to which the policy was applied, and therefore to all the data in each dataset.

The N series Management Console data protection capability also makes protection topology changes more efficient. For example, if you had a dataset that was backed up to a secondary node, you might want to add a mirror copy of that secondary node. Using the N series Management Console data protection capability, you would change the policy assigned to that dataset from a **Back up** policy to a **Back up, then mirror** policy, and then you would add a resource pool to the mirror node. The N series Management Console data protection capability would determine how to set up the mirror relationships and provision the necessary storage on the mirror node.

The storage services feature allows you to configure different combinations of protection policies, provisioning policies, resource pools, and vFiler templates (for optional vFiler unit creation and attachment) into different packages. You can then select from these packages and apply the appropriate storage services package to the appropriate datasets, further simplifying the task of setting up appropriate, consistent, and conformant protection and provisioning of your data.

Provisioning and protection monitoring

The N series Management Console data protection and provisioning capabilities continually monitor all the components in your data protection implementation to help ensure that your data is protected as defined in the policy applied to its dataset.

End-to-end status monitoring

Instead of separately monitoring each component involved in provisioning and protection, you can monitor the status values displayed in the dashboard. The status values indicate whether there are problems in the provisioning or protection of your datasets.

For example, consider the dataset protection status, which you can use to verify that your overall protection implementation is functioning as intended.

If a dataset is protected by the **Back up, then mirror** policy and someone misconfigures the credentials on the host containing the mirror copy, the DataFabric Manager server cannot log in to the host. The dataset protection status turns from Protected (green) to Partial Failure (yellow). You can configure the system to alert you to the change in status, so you would immediately know which dataset was experiencing protection problems. You could then pursue remedial action according to the priority of the dataset.

Using traditional methods of managing data protection, you would need to monitor the systems storing backups and mirror copies. You would be alerted to a problem on the host containing the mirror copy, but you would have to track the relationship from the problem back to the mirrored data to identify the specific data affected. This approach is especially problematic for data under compliance requirements; you need to be sure that data is protected to meet those requirements.

By monitoring the dataset status in the N series Management Console data protection capability, you can be confident that the data protection you implemented is being carried out as intended.

Dashboards for high-level monitoring

The N series Management Console data protection and provisioning capabilities include a set of "dashboard" panels that provide at-a-glance information on status, protected and unprotected data, resource pool usage, lag times, and recent events. From each dashboard panel, you can click a button to go directly to a window displaying detailed information.

The N series Management Console data protection capability includes the following dashboard panels:

- Failover Readiness
- Failover Status
- Top Five Events
- Dataset Protection Status
- Protected Data
- Unprotected Data

- Dataset Lags
- External Relationships Lags

The N series Management Console provisioning capability includes the following dashboard panels:

- Dataset Conformance Status
- Top Five Events
- Dataset Resource Status
- Dataset Space Status
- Resource Pool Space Status
- Resource Pools

Disaster recovery concepts

The disaster recovery feature enhances your data protection services by enabling you to continue to provide data access to your users, even in the event of a mishap or disaster that disables or destroys the storage systems in your primary node.

What disaster recovery protection is

Disaster recovery protection enables your secondary storage systems to provide primary data storage access to your users with little or no interruption, until your disabled primary storage systems are reenabled or replaced.

You can use either the N series Management Console data protection capability or Data ONTAP to manage disaster recovery of vFiler units, but not both.

Attention: If you intend to use the disaster recovery capability in the N series Management Console, do not add to datasets any vFiler units that were created outside of N series Management Console if the vFiler is configured for Data ONTAP vFiler DR. Adding such vFiler units to datasets could result in SnapVault relationships for identically named qtrees being incorrectly removed during a disaster recovery event.

Disaster recovery terminology

It is helpful to have an understanding of the basic concepts associated with disaster recovery terminology.

The implementation of disaster recovery protection in N series Management Console relies on the following concepts:

Failover An automated process which, when invoked, transfers primary storage

capability and accessibility from threatened, disabled, or destroyed storage systems in a primary node to secondary storage systems in the disaster recovery

node.

Failback Command-line based procedures that restore primary storage function to the

original primary storage site after its storage systems are reenabled or replaced.

Disaster

Describes a dataset that is configured with the protection policies and recovery capable provisioned with the primary storage and secondary storage resources to support disaster recovery protection.

Disaster recovery node The dataset secondary storage node that is configured to also provide failover primary storage access to users in the event of a mishap or disaster making the original primary storage systems unavailable.

Disaster recovery relationship The type of data protection and failover procedures configured between the primary storage and secondary storage systems (in the disaster recovery node), and between the secondary storage systems and any tertiary storage systems.

Otree **SnapMirror** The technology that supports qtree-to-qtree disaster recovery capable backup relationships in the N series Management Console data protection capability and possible failover operations between primary storage systems and secondary storage systems. In disaster recovery protection policies, secondary storage is located in the disaster recovery node.

Volume **SnapMirror** The technology that supports volume-to-volume disaster recovery capable mirror relationships in the application and possible failover operations between primary storage and secondary storage systems. In disaster recovery protection policies, secondary storage is located in the disaster recovery node.

SnapMirror relationship break

The automated event during failover that breaks the SnapMirror relationship between primary storage and secondary storage in the disaster recovery node.

Failover state

Dashboard status in N series Management Console that indicates the progress and success of a failover operation if the failover process is invoked. Possible states include: Ready, Failing over, Failed over, and Failover Error.

Failover readiness Dashboard status in N series Management Console that indicates the readiness of the managed datasets to successfully carry out failover operations.

Failover script

An optional user-authored script that specifies data application-related operations that might be needed to be performed before and after the failover invoked SnapMirror relationship break between primary storage and secondary storage in the disaster recovery node.

Rebaselining

The protection backup or mirroring of data by the transfer or copy of the entire body of data from primary to secondary or secondary to tertiary storage. All initial backup or mirror operations from primary to secondary or secondary to tertiary storage are baseline operations and can be quite lengthy. Succeeding backup or mirror operations can be incremental, involving only the transfer from source to destination that has changed since the last backup or mirror operation. When assigning a new protection policy (disaster recovery capable or not) after a disaster and successful failover, the most preferable choice might be to assign and set up a protection policy that minimizes rebaselining of data in the primary, secondary, and tertiary storage.

Standard protection or disaster recovery protection of datasets

Configuration of datasets for disaster recovery protection is similar to configuration of datasets for standard data protection. However, the features provided by disaster recovery protection require some additional dataset configurations.

Provisioning policies assigned to secondary storage

If you want to assign an optional provisioning policy to your secondary node, you have the following options:

- In datasets with disaster recovery protection, you can assign a NAS, SAN, or Secondary storage type provisioning policy to the secondary storage disaster recovery node.
- In datasets with standard protection, you can only assign a Secondary storage type provisioning policy to the secondary node.

Note: In all cases, you can chose not to assign a storage policy and assign physical resources directly to each node as was necessary in previous versions of the N series Management Console data protection capability.

Exporting data to secondary storage

If you are configuring disaster recovery protection, you have the option to assign an export protocol to the disaster recovery node so that in case of failover, users can access data in the disaster recovery node using the same protocols they used to access data in the original primary node.

- If you assign a provisioning policy for NAS or SAN type storage to the disaster recovery node, you can also enable export protocols to access that data: CIFS and NFS for NAS type storage; iSCSI and Fibre Channel Protocol (FCP) for SAN type storage.
 - The N series Management Console provisioning capability also exports secondary storage through a vFiler unit if a disaster recovery node is associated with a vFiler unit.
- If you are only configuring standard protection, not disaster recovery protection, you cannot
 enable export protocols on the secondary storage node through the N series Management Console
 provisioning capability.

SnapVault and SnapMirror backup protection requirements

- In datasets configured for disaster recovery backup protection, SnapMirror licenses on the
 primary and disaster recovery node systems are required to support the backup operation. The N
 series Management Console data protection capability configures underlying Qtree SnapMirror
 relationships that support backup and failover processes between the primary and disaster
 recovery nodes.
- In datasets configured for standard backup protection, either SnapVault or SnapMirror licenses on the primary and secondary storage systems will support the backup operation.

Changes in the user interface

The N series Management Console provisioning capability user interface differentiates datasets configured for standard protection and disaster recovery protection.

Policy graph

The policy graph for a protection policy that is capable of disaster recovery looks similar to a policy graph for a regular protection policy, except that the disaster recovery node is designated with a disaster recovery flag () to indicate the ability of that node to take over primary data node functions if failover is invoked.

New dashboard windows

The N series Management Console data protection capability dashboard reports on disaster recovery state and status to provide information at a glance that all is well or that something needs attention. In this illustration, the Failover Readiness panel and Failover Status panel use color, icons, and text to display the state and status for datasets that are capable of disaster recovery. The colors and text vary according to the status of the activity.

Policy wizards, Disaster Recovery tab, and the Policy Overview tab have tables that include a disaster recovery column to indicate whether a policy supports disaster recovery.

The disaster recovery policy uses a policy icon () to indicate that, if applied, it will protect the dataset for disaster recovery.

Deduplication support

Deduplication is the N series Management Console provisioning capability option that you can enable on your storage nodes to eliminate duplicate data blocks to reduce the amount of storage space used to store active data.

What deduplication allows

On the affected volumes, deduplication allows you to reduce the amount of space used to store active data, or even allows you to purposely over deduplicate and store more bytes of data than the capacity of the available physical storage.

You can enable your provisioning policies to support three modes of deduplication.

On-demand
deduplication

On-demand deduplication is executed on a selected volume that is enabled for deduplication when you click the **Dedupe Now** button on your Provisioning tab.

Automated

Automated deduplication, if enabled on a dataset node, is run automatically on any volume in that node when the amount of new data written to that volume reaches 20% of total volume space.

Scheduled deduplication

Scheduled deduplication, if enabled on a dataset node, is run automatically on the volumes in that node on the days of the week, during a particular time period, and at a frequency that you have specified.

What happens during deduplication

After deduplication is enabled and started, the provisioning application performs a full or incremental consolidation of duplicate data blocks on the volumes on which deduplication has been applied.

- The deduplication process is triggered by one of three possible events:
 - If the "On-demand deduplication" mode is enabled on a dataset node, deduplication is run ondemand by the user on a selected volume.
 - If the "Automated deduplication" mode is enabled on a dataset node, deduplication begins automatically on a volume residing on that dataset node when the amount of new or changed data on that volume reaches 20%.
 - If the "Scheduled deduplication" mode is enabled on a dataset node, deduplication begins automatically according to a user-customized schedule on all volumes in a dataset node.

Note: In "Scheduled deduplication" mode, deduplication starts on Disaster Recovery capable Mirror destinations only after the SnapMirror relationship between primary storage and the secondary storage nodes on which they reside is broken.

• The initial deduplication operation on a volume is a full volume run. All blocks of data on the volume are scanned for duplication and the duplicate blocks are consolidated (or deduplicated).

Note: Because the initial deduplication operation is a full volume run, in which all data is scanned, it requires more time to complete than subsequent operations.

 Subsequent deduplication operations are usually incremental operations. Only the new or changed blocks of data on the target volume or volumes are scanned for duplication and possible consolidation.

Note: In "On-demand deduplication" mode, you have the option of starting a full volume or partial volume run every time you click **Dedupe Now**.

How RBAC is used

Applications use RBAC to authorize user capabilities. Administrators use RBAC to manage groups of users by defining roles and capabilities.

For example, if you need to control user access to resources, such as groups, datasets, and resource pools, you must set up administrator accounts for them. Additionally, if you want to restrict the information these administrators can view and the operations they can perform, you must apply roles to the administrator accounts you create.

Note: RBAC permission checks occur in the DataFabric Manager server. RBAC must be configured using the Operations Manager console or command-line interface.

SAN resource provisioning example workflow

This is a step-by-step example of how you might configure your system to provision storage resources.

For descriptions of some of the concepts and terminology associated with the N series Management Console provisioning capability, see *Introduction to provisioning and protection* on page 11.

For administrative tasks and additional reference and conceptual information associated with the N series Management Console provisioning capability, see the N series Management Console Help.

The following list describes the tasks you need to complete for this example workflow:

Steps

- 1. Plan to implement SAN resource provisioning on page 27
- 2. Configure the storage system to host the vFiler unit on page 33
- 3. Create a resource pool on page 34
- 4. Create a vFiler template on page 35
- 5. Create a vFiler unit on page 36
- **6.** Create a SAN provisioning policy on page 38
- 7. Create a dataset and provision a LUN on page 39

Plan to implement SAN resource provisioning

Plan your SAN resource provisioning task by considering your specific goals, the best provisioning strategies available, and your initial configuration of resources.

SAN provisioning example setup

In this workflow, assume you are a storage administrator managing, over a high-speed IP network, a shared SAN storage infrastructure consisting of your company's storage systems and your customers' data.

You need to provision LUNs for deploying a new application for your customer. The storage will be accessed by using the iSCSI protocol. To isolate the storage for security purposes, you will use the licensed MultiStore option to create a dedicated vFiler unit for the customer and export all the storage required by the customer over the vFiler unit. The customer data, mostly project files and applications, will be accessed over a virtual private LAN.

Develop a SAN provisioning strategy

Before configuring the space and provisioning requirements for your systems, you must develop a strategy for how you will group the resources and how the application should respond in out-of-space conditions.

For descriptions of the basic concepts and terminology associated with the N series Management Console provisioning capability, see *Introduction to provisioning and protection* on page 11.

Your provisioning strategy addresses a variety of considerations, such as the following:

- *General considerations* on page 28
- Security considerations on page 28
- Availability considerations on page 29
- Space management considerations on page 29
- *Notification considerations* on page 30
- *RBAC considerations* on page 30

General considerations

- What type of storage, NAS or SAN, do you want to provision with this policy?
- Will you use a provisioning policy or manually provision resources in datasets?
- Will you assign resource pools or individual physical resources to your datasets? If you intend to allow the N series Management Console provisioning capability to provision storage for the dataset, you would want to use resource pools. If you want to import existing data into a dataset, you would want to select individual physical resources.
- What type of dataset container will you use: LUNs, for direct access to storage from hosts, or volumes, for delegating LUN creation to SnapDrive?
- Do you want to enable the dataset for automated offline migration?

 This allows for the automatic migration of data stored on vFiler units and information relevant to the vFiler unit, such as NFS exports, CIFS shares, LUN mappings, and so forth.
- Will you use a custom provisioning script after storage is provisioned?
 You might use a script to perform tasks such as additional configuration operations on the newly provisioned storage.

Security considerations

- How will the customer's application access data?
 Since the storage type for this example is SAN, determine the access or export protocols that you need to configure for SAN: iSCSI or FC.
- How can the dataset be accessed?
- How can access to the storage be protected from unauthorized access?
 For example, you might use the MultiStore option to create vFiler units to isolate storage. You could also choose to specify CIFS User ACLS to restrict access.

 Which hosts are allowed access to the data? You can restrict access to the LUNs by specifying the host initiator IDs that can access the LUNs.

Availability considerations

What level of availability protection does the dataset require?

Availability level is determined by how critical the data is that you are protecting and can be one of the following:

- RAID-DP (double disk failure) Protects against the simultaneous failure of two disks.
- RAID4 (single-disk failure) Protects against the failure of a single disk.
- Externally managed RAID

The N series Management Console provisioning capability from external storage. Therefore, RAID protection is determined by the external storage capabilities.

- Storage subsystem failure (aggregate SyncMirror) Protects against the failure of disk shelves, adapters, and cables.
- Storage controller failure (HA configuration) Protects against the failure of a storage system within an HA configuration.

Space management considerations

- Will you use aggregate overcommitment to thinly provision your storage?
- Do you want to guarantee space for primary data and for Snapshot copies or do you want to grow space for Snapshot copies when needed?
 - You can reserve space for LUNs and either reserve or grow space for Snapshot copies so that application writes do not fail due to lack of disk space.
- What actions should occur when a dataset needs more storage space? The options are:
 - You can allocate all storage space for data and Snapshot copies or you can use aggregate overcommitment to thinly provision your storage.
 - You can choose to grow space by deleting old Snapshot copies automatically to guarantee space for application data (requires Data ONTAP 7.2.4 or later).
 - You can choose to grow space by deleting Snapshot copies manually when needed. This requires more available space because existing Snapshot copies are preserved during write activity.
 - You can choose not to guarantee space for data or Snapshot copies.
- What is the maximum amount of disk space you want available for Snapshot copies?
- Do you want to enable deduplication to reduce your storage space requirements?

Notification considerations

Do you want a space utilization alert to be sent when a space threshold is reached?
 You can enable the Space utilization thresholds and set the values at which alerts will be sent when the Nearly full and Full thresholds are reached.

RBAC considerations

Your administrator account already has the roles and capabilities assigned to it that you need to perform all the tasks necessary to implement the provisioning strategy. See *Administrator roles and capabilities* on page 147 for a list of RBAC roles required for provisioning tasks.

SAN provisioning example assumptions

The descriptions and procedures in the provisioning workflow are based on the assumptions about your system configuration that are provided in the sections of this chapter.

- *General assumptions* on page 30
- *Licenses enabled* on page 30
- Resource pool properties on page 31
- *vFiler template properties* on page 31
- *vFiler unit properties* on page 31
- Provisioning policy properties on page 32
- *Dataset properties* on page 32

General assumptions

For this workflow, assume the following:

- You are configuring a storage environment of SAN over iSCSI.
- Your protection strategy has been implemented outside of Management Console.
- All hardware you intend to use has been configured with appropriate licenses, protocols, settings, and so forth.
- The customer's new application will be installed on a vFiler unit that you will create.
- Aggregates of unused storage space have been preconfigured on the storage system that will host the vFiler unit.
- For any property not specified in this example, use the default value.

Licenses enabled

For this workflow, you would need the following licenses enabled:

- DataFabric Manager license
- Data ONTAP MultiStore license, on the storage that will host the vFiler unit

Note: Other licenses such as SnapMirror or SnapVault might be needed to set up your protection environment, but that is not addressed in this workflow.

- iSCSI license on the storage system that will host the vFiler unit
- A SIS deduplication license on the storage that will host the vFiler unit

Resource pool properties

For this workflow, assume use of the following properties when creating the resource pool:

- Details (general properties)
 - Name: ExampleCo-RP
 - Description: Res pool for ExampleCo vFiler units
- Allocate physical resource: storage-EC-8

vFiler template properties

For this workflow, assume use of the following properties when creating the vFiler template:

- Name: EC-template
- Description: vFiler template for ExampleCo
- Administrative host: 10.0.0.18
- DNS name: EAST.exampleco.com
- DNS server: 10.0.0.20
- · NIS name: ENG
- NIS server: 172.16.3.145

Dataset migration properties

For this workflow, assume use of the following properties when enabling dataset migration:

- IP address: 172.26.18.10
- Network mask: 255 255 255 10

Note: These are the same addresses that are used for creating the vFiler unit that hosts the storage for the dataset.

vFiler unit properties

For this workflow, assume use of the following properties when creating the vFiler unit:

- Name: EC-vFiler-3
- IP space: default-ipspace
- Allowed protocols: iSCSI
- Hosting storage system: Select ExampleCo-RP.
- IP address of the vFiler unit: 255.255.255.10172.26.18.10
- Network mask: 255.255.255.10
- Interface: Select e4-20, the VLAN interface you created.

• vFiler template: Select EC-template, the template you used to create the vFiler unit.

Provisioning policy properties

For this workflow, assume use of the following properties when creating the provisioning policy:

- General properties
 - Policy name: provpol-san
 - Policy description: Any meaningful description, such as SAN over iSCSI with LUNs
 - Storage type: SAN
- Disk failure protection: RAID-DP (Double disk failure)
- Deduplication: Select Enable deduplication on volumes and Automated deduplication

Dataset properties

For this workflow, assume use of the following properties when creating the dataset and provisioning LUN storage:

- Dataset name: ExampleCo-DS-1
- Provisioning policy: provpol-san
- Export setting: Turn on iSCSI
 - Initiator ID: iqn.1989-03.com.isinit:app1
 - Host operating system: Windows
- Automated offline migration: Enable automated offline migration
 - IP address for data access: 172.26.18.10
 - Network mask: 255.255.255.0
- Resource pool: ExampleCo-RP
- vFiler unit: EC-vFiler-3
- Provision LUNs
 - · LUN name: EC-lun
 - LUN description: Any useful description
 - LUN space: 1 GB (default)
 - Maximum space of Snapshot copies: 2 GB (default)
 - Initial space of Snapshot copies: 1 GB (default)
- Resource selection: Allow the system to automatically select a resource from the attached resource pool

Configure the storage system to host the vFiler unit

After determining your provisioning strategy, your first task is to configure the storage system that will host the vFiler unit. This includes setting the login credentials for the host and ensuring that the appropriate licenses are enabled on the host, according to your provisioning strategy.

Before you begin

Have the following information available for the storage system you want to configure:

- The name of the system hosting the vFiler unit: storage-EC-8
- Login credentials for the storage system
- License codes for applications running on the storage systems you plan to use

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

About this task

You will now verify the following information for each host that you are using:

- You have the appropriate license codes for applications running on the storage systems you plan to use.
- The Data ONTAP MultiStore license is installed.
- The hosts or aggregates that you intend to use are not already part of another resource pool (resources can only belong to one resource pool).

Note: You must configure aggregates of unused space on the storage system before the vFiler unit can be created.

Steps

- 1. From the menu bar, click Hosts > Storage Systems.
- 2. If not already selected, click **Details** at the bottom of the window.
- 3. From the list of hosts, you select the host storage-EC-8.

For the instructive purposes of this example, you find that login credentials are bad for this host.

4. Click Edit.

The properties sheet for the selected host appears. The current credential information for the host is displayed, with password strings masked by asterisks.

5. Update the Login Credentials fields with valid user names and passwords; then click **OK**.

The database is updated with the credentials for the selected host.

- **6.** With the host **storage-EC-8** still selected in the list, verify the following license information:
 - The MultiStore license is enabled.
 - The iSCSI protocol license is configured.

For the instructive purposes of this example, you notice that the iSCSI protocol is configured, but that the MultiStore license is not enabled.

7. With storage-EC-8 still selected, click **Edit**; then click **Licenses**.

A list of licenses that can be configured on the selected host appears.

8. Type the MultiStore license code in the New License field; then click **OK**.

The MultiStore license is configured on storage-EC-8. Note that it is not necessary to indicate which service the code enables. The code is matched automatically to the appropriate service license

9. With storage-EC-8 still selected, click the Usage tab at the bottom of the window.

The lower area of the window changes.

10. Select Aggregates from the Resource Type list.

The aggregates on the host storage-EC-8 are displayed in the tree view.

11. Click each item in the tree view to verify that neither the host nor any of its aggregates are already associated with a resource pool.

When you click a name in the tree view, any resource pool or dataset associations are displayed in the dependencies area of the window.

After you finish

Now that you have configured the host with login credentials and verified the licenses, the next step is to add the host to a resource pool that the N series Management Console provisioning capability uses to provision storage.

Create a resource pool

Create a new resource pool and add the storage system that you configured.

Before you begin

Where needed, you should have already created aggregates of unused space on host storage-EC-8, which you intend to add to a resource pool for the vFiler unit.

Before creating each resource pool, you should have available the information necessary to complete the Add Resource Pool wizard:

• The name of the resource pool to be created

- The time zone the policy schedules should assume when timing protection events If you do not select one, the default is used.
- The group that contains the hosts or aggregates you plan to assign to the resource pool
- The physical resources to associate with the resource pool
- The Space thresholds for setting alerts for out-of-space conditions
- The Aggregate overcommitted thresholds

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

Steps

- 1. From the menu bar, click **Data** > **Resource Pools** > **Resources**.
- 2. Click Add to open the Add Resource Pool wizard.
- **3.** Complete the wizard by using the following values:
 - General properties:

Name: ExampleCo-RP

Description: Res pool for ExampleCo vFiler units

• Physical resources:

Group: Global

Resource type: Hosts

Physical resource: storage-EC-8

4. Confirm the details of the resource pool; then click **Finish** to complete the wizard.

Result

You can view the new resource pool in the Resource Pools window.

After you finish

You next create a vFiler template.

Create a vFiler template

You will now create a vFiler template that you will use to create a new vFiler unit.

Before you begin

Before creating a vFiler template, you need to gather the information necessary to complete the Add vFiler Template wizard:

- The name of the new template
- The DNS domain settings: name and server
- The NIS domain settings: name and server
- The CIFS settings: not used for this example, so you should accept the defaults

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

Steps

- 1. From the menu bar, click **Policies** > vFiler Templates.
- 2. Click Add to start the Add vFiler Template wizard.
- **3.** Complete the wizard by using the following values:
 - Name: **EC-template**
 - Description: vFiler template for ExampleCo
 - Administrative host: 10.0.0.18
 - DNS domain name: EAST.exampleco.com
 - DNS domain server: 10.0.0.20
 - NIS domain name: ENG
 - NIS domain server: 172.16.3.145
 CIFS settings: accept the defaults
- **4.** Preview and verify the actions to create the vFiler template.
- 5. Confirm the details of the template; then click **Finish** to complete the wizard.

Result

Your new policy is listed in the vFiler Templates window.

After you finish

You next create a vFiler unit.

Create a vFiler unit

You will now create a dedicated vFiler unit that you will use to isolate and export your customer's storage.

Before you begin

Be sure the host on which you want to create a vFiler unit is running Data ONTAP 7.1 or later.

The IP address used by the vFiler unit must not be configured when you create the vFiler unit.

Before creating a vFiler unit, you need to gather the information necessary to complete the Add vFiler Unit wizard:

- Name
- IP address
- IP space name
- Protocols to be enabled on the vFiler unit
- Name of the storage system or resource pool to be associated with the vFiler unit
- IP address, network mask, network interface, and VLAN ID of the vFiler unit
- vFiler template being used

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

Steps

- 1. From the menu bar, click Hosts > vFiler Units.
- 2. Click Add to start the Add vFiler Unit wizard.
- **3.** Complete the wizard by using the following values:
 - General properties:

Name: EC-vFiler-3

IP space: **default-ipspace** Allowed protocols: iSCSI

- Resource pool: ExampleCo-RP
- Select: Create and Setup vFiler unit
- Network interface settings for the vFiler unit:

IP address: 172.26.18.10

Network mask: 255,255,255.0

Network interface: e4-3

VLAN ID: 3

• vFiler template: **EC-template**

• Root password: none

- **4.** Preview and verify the actions to create the vFiler unit.
- 5. Confirm the details of the vFiler unit; then click **Finish** to complete the wizard.

Result

You can view the new vFiler unit in the host list.

After you finish

You next create a provisioning policy.

Create a SAN provisioning policy

You will now create a provisioning policy to apply to a dataset. When assigned to a dataset, the provisioning policy establishes the rules for how the storage space needs to be provisioned for that dataset.

Before you begin

Before creating a provisioning policy, you need to gather the information necessary to complete the Add Provisioning Policy wizard:

- The name of the new policy
- The type of storage you want to provision with this policy
- The level of protection the dataset requires
- · The deduplication settings, if enabled
- The type of container (LUN or volume)
- The space settings
- The space thresholds

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

Steps

- 1. From the menu bar, click Policies > Provisioning.
- 2. Click Add to start the Add Provisioning Policy wizard.
- **3.** Complete the wizard by using the following values:
 - General properties:

Name: provpol-san

Description: SAN policy for ExampleCo

Type of storage: **SAN**

- Availability properties: Disk failure protection, RAID-DP (Double disk failure)
- Deduplication:

Select Enable deduplication on volumes

Select Automated deduplication

• SAN container properties:

Types of containers to provision: LUN

Space settings: Guarantee space for LUN and grow space for Snapshot copies on demand: Allow automatic deletion of Snapshot copies when necessary

• Space thresholds

Enable Space utilization thresholds

Nearly Full threshold: 80%

Full threshold: 90%

- **4.** Preview and verify the actions to create the policy.
- 5. Confirm the details of the policy; then click **Finish** to complete the wizard.

Result

The new policy is listed in the Provisioning Policies window.

After you finish

You next create a dataset and provision a LUN.

Create a dataset and provision a LUN

You must now create a dataset to which you will assign the provisioning policy, resource pool, and vFiler unit that you created.

Before you begin

Before creating a new dataset, you need to gather the necessary information to complete the Add Dataset wizard:

- The name of the new dataset
- The name of and contact information for the owner of the dataset
- The time zone in which the dataset resides
- The name of the group to which the dataset will belong
- The name of the provisioning policy you want to assign to the dataset
- iSCSI export settings
- The name of the resource pool that you want to assign to the dataset
- The IP address and network mask for migration Use the same addresses that you used for the vFiler unit network interface settings.
- The name of the vFiler unit that you want to assign to the dataset
- The name, description, and size of the LUN you are provisioning

Steps

1. Log in to the DataFabric Manager server and enter the following command to set the default vFiler interface:

dfm host set storage-EC-8 defaultvFilerInterface=e0a

2. From the menu bar, click Data > Datasets > Overview.

The Overview tab of the Datasets window is displayed.

- 3. Click **Add** to start the **Add Dataset** wizard.
- **4.** Complete the wizard by using the following values:
 - General properties:

Dataset name: ExampleCo-DS-1

- Group: Global
- Select Provision and attach resources using a policy
- Provisioning settings:

Provisioning policy: provpol-san

iSCSI Export Settings: Click **Turn on now** iSCSI initiator ID: **iqn.1989-03.com.isinit:app1**

Host operating system: Windows Resource pool: ExampleCo-RP

• vFiler unit: **EC-vFiler-3**

• Would you like to provision storage now: Yes

• Container name and size:

LUN name: EC-lun

LUN description: Any useful description

LUN space: 1 GB

Maximum space of Snapshot copies: **2 GB** Initial space of Snapshot copies: **1 GB**

- Resource selection: Allow the system to automatically select a resource from the attached resource pool(s)
- **5.** Preview and verify the actions to create the dataset.
- **6.** Confirm the details of the dataset; then click **Finish** to complete the wizard.

Result

The new dataset appears in the list of datasets. You have completed the example workflow for creating a dataset and provisioning storage in a SAN environment.

Dataset offline migration example workflow

This workflow describes the offline migration of a dataset from one storage system to another. In contrast to online migration, offline migration requires that the data being migrated be offline and unavailable during the time that user access of data is cut over from the source to destination storage systems.

The description in this workflow assumes that you have completed the *SAN resource provisioning example workflow* on page 27.

For descriptions of some of the concepts and terminology associated with the N series Management Console provisioning capability, see *Introduction to provisioning and protection* on page 11.

For administrative tasks and additional reference and conceptual information associated with the N series Management Console provisioning capability, see the N series Management Console Help.

Steps

- 1. Plan to implement offline migration on page 41
- 2. Add a physical resource to the resource pool on page 45
- 3. Start the dataset offline migration on page 45
- 4. Update the migration SnapMirror relationships on page 46
- 5. Cut over to the new dataset storage destination on page 47
- 6. Clean up the dataset offline migration on page 48
- 7. Manually delete old IPspace and VLAN on page 49

Plan to implement offline migration

When you plan to perform a dataset offline migration, consider the specific requirements of this migration job, an implementation strategy to follow, and the initial configuration of the system on which you are performing this task.

Dataset offline migration example setup

This example is a continuation of the SAN provisioning workflow and is based on the same assumptions that you are a storage administrator who is managing a shared SAN storage infrastructure over a high-speed IP network. In this example, you migrate a dataset's primary storage to a new storage location.

Note: Although in this example workflow the data being migrated is in a SAN storage environment, you can carry out offline migration of data residing in either SAN or NAS storage environments.

Your dataset is running out of space and needs to move to a different storage system. Because a dedicated vFiler unit is assigned to the dataset, the dataset is automatically enabled for migration.

(The N series Management Console provisioning capability migrates vFiler units. Therefore, if your dataset has a vFiler unit assigned as a host, and if all of the storage for the dataset is provisioned through that vFiler unit, you can migrate the dataset to another storage system.)

In this example, the one storage system in the resource pool is not large enough for the dataset. Therefore, you also have to add an additional system to the resource pool to use as the dataset migration destination.

Develop a dataset offline migration strategy

Before starting a dataset migration, you must develop a strategy for selecting the new destination storage, the provisioning policy for the new storage, and the vFiler unit interface you want to use.

Your migration strategy addresses the following considerations:

- Destination storage selection considerations on page 42
- Provisioning policy considerations on page 42
- *vFiler unit interface considerations* on page 42
- *RBAC considerations* on page 43

For descriptions of the basic concepts and terminology associated with the N series Management Console provisioning capability, see *Introduction to provisioning and protection* on page 11.

Destination storage selection considerations

What is the new destination storage system for the dataset's primary storage?

The Dataset Migration wizard displays a list of resource pools and a list of storage systems that you can select from. You must select a resource pool or storage system that has enough space and provides the necessary performance required for the dataset.

Provisioning policy considerations

Which provisioning policy do you want applied to the migrated dataset?

By default, the currently assigned provisioning policy for the source dataset is selected; however, you can select a different one if a different provisioning policy configuration is needed for the migrated dataset.

vFiler unit interface considerations

What vFiler unit interfaces do you want to use?

If the vFiler unit associated with the source dataset is not created using the default interface settings, then to which interfaces do you want to bind the IP addresses of the vFiler unit on the destination storage system? You can select from an already-populated list of IP addresses that displays the associated netmask and interface values, and an already-populated VLAN ID. You can also specify a different VLAN ID.

RBAC considerations

Your administrator account already has the roles and capabilities assigned to it that you need to perform all the tasks necessary to implement the dataset migration strategy. See Administrator roles and capabilities on page 147 for a list of RBAC roles required for provisioning tasks.

Dataset offline migration example assumptions

The descriptions and procedures in the dataset offline migration example are based on a set of assumptions about licenses, resource pools, and other elements of your system configuration.

- General assumptions on page 43
- *Licenses enabled* on page 43
- Resource pool on page 44
- *vFiler unit* on page 44
- *VLAN* on page 44
- *Provisioning policy* on page 44
- Dataset on page 44

General assumptions

For this example, assume the following:

- You are adding a new storage system to your existing resource pool in a SAN-over-iSCSI environment.
- All hardware you intend to use is configured with appropriate licenses, protocols, settings, and so forth.
- Aggregates of available storage space are preconfigured on the new storage system.
- You are assigned the following RBAC roles:
 - DFM.Resource.Control on the source vFiler unit and on the destination storage system
 - DFM.Dataset.Write on the dataset
 - DFM.Global.Read on the source vFiler unit and on the destination storage system
- No premigration or postmigration scripts will be used.
- For any property not specified in this example, the default value applies.

Licenses enabled

For this example, enable the following licenses:

- DataFabric Manager license
- Data ONTAP MultiStore license, on the destination storage system
- SnapMirror license on the destination storage system.
- iSCSI license on the destination storage system

Resource pool

For this example, use the following information when adding a physical resource to the resource pool that you created in the provisioning workflow example:

- Details (general properties, no change from the provisioning workflow example)
 - Name: ExampleCo-RP
 - Description: Res pool for ExampleCo vFiler units
- Allocate physical resource: **storage-EC-9**
- Resource label: None used

vFiler unit

For this example, use the vFiler unit that you set up in the provisioning workflow example:

- Name: EC-vFiler-4
- IP space: default-ipspace
- Allowed protocols: iSCSI
- Hosting storage system: Select ExampleCo-RP
- IP address of the vFiler unit: 172.26.18.10

VLAN

For this example, use the VLAN interface named **e4-20** that you created up in the example provisioning workflow.

Provisioning policy

For this example, use the provisioning policy named **provpol-san** that you created in the example provisioning workflow.

Dataset

For this example, use the dataset named **ExampleCo-DS-1** that you created in the example provisioning workflow.

Add a physical resource to the resource pool

Before you start the dataset offline migration, you must add a storage system to the dataset's resource pool so that it can host the dataset when the dataset is migrated. The new storage system you add is used as the destination storage system for the dataset migration.

Before you begin

Before adding physical resources to the resource pool, you should have available the information necessary to edit the resource pool properties:

- The name of the resource pool (required)
- The name of the storage system you want to add (required)

Steps

- 1. From the menu bar, click **Data** > **Resource Pools**.
- 2. From the list of available resource pools, select the resource pool named ExampleCo-RP.
- 3. Click Edit to open the Properties sheet; then click Physical Resources.
- 4. Select the storage system named storage-EC-9 from the list named "Available physical resources"; then click > to add it to the list named "Resources in this resource pool."
- 5. Click OK.

Result

The resource pool's configuration is modified and saved and the destination storage system is added to the resource pool.

After you finish

You will next start the dataset offline migration.

Start the dataset offline migration

You will now start the offline migration of the dataset, which begins a baseline transfer to the destination storage system.

Before you begin

Have available the name of the destination storage system.

About this task

You can cancel a dataset migration any time during the migration start operation.

Steps

- 1. From the menu bar, click Data > Datasets > Migration.
- 2. Select the dataset named ExampleCo-DS-1 and make sure it has the status "Not started."

This status indicates that the dataset meets the dataset migration requirements and that a migration is not already in progress.

- 3. Click Start migration to start the Dataset Migration wizard.
- **4.** Complete the wizard, using the following values:
 - Destination storage system: **storage-EC-9** (the newly added storage system)
 - Provisioning policy: **provpol-san** (same as currently assigned to the dataset)
 - Interface IP address of the vFiler unit: **172.26.18.10** (same as currently configured for the vFiler unit)
 - Netmask: **255.255.255.10** (same as currently configured for the vFiler unit)
 - VLAN ID: e4-20 (same as currently configured for the vFiler unit)
- 5. Confirm the details of the migration, and then click **Finish** to complete the wizard.

You can check the job progress displayed in the Tracking Dataset Migration Job display popup window or in the Jobs tab on the Datasets window Migration tab.

After you finish

Update the SnapMirror relationships that were created in the start migration operation.

Update the migration SnapMirror relationships

You will now initiate an on-demand update of the SnapMirror relationships that were created as part of the dataset offline migration start operation. You can perform this task only on a dataset that has finished the migration start operation.

About this task

This is an optional step in the dataset migration process, because the migration cutover operation also updates the SnapMirror relationships.

Steps

1. From the menu bar, click **Data > Datasets > Migration**.

2. Select the dataset named ExampleCo-DS-1 and make sure it has the status "Started, cutover required."

This status indicates that the migration start operation baseline transfer to the new destination storage system is finished.

- 3. Click Update.
- **4.** Click **Yes** in the confirmation dialog box to begin the operation.

You can track the progress of the operation in the Datasets window Migration tab Jobs tab, or in the Jobs window.

After you finish

You will next cut over to the new storage system.

Cut over to the new dataset storage destination

You will now initiate the migration cutover operation. This operation stops access to the vFiler unit on the source storage system from which the data is served, enables access to the vFiler unit on the new destination storage system, and updates the SnapMirror relationships that were created as part of the migration start operation.

Before you begin

You can perform this task only on a dataset that has finished the migration start operation.

Because this is an automated offline migration, you must shut down all applications that use the dataset.

Steps

- 1. From the menu bar, click **Data > Datasets > Migration**.
- 2. Select the dataset named ExampleCo-DS-1 and make sure it has the status "Started, cutover required."

This status indicates that the migration start operation baseline transfer to the new destination storage system is finished.

- 3. Click Cutover.
- **4.** Click **Cutover** in the confirmation dialog box to begin the operation.

You can track the progress of the operation in the Datasets window Migration tab Jobs tab, or in the Jobs window.

Result

After the dataset is switched over to the destination storage system, the backup versions, backup relationships, and DataFabric Manager history for the volumes are transferred to the destination storage system.

After you finish

You must restart all applications that use the migrated dataset.

You will next initiate the migration cleanup operation.

Clean up the dataset offline migration

You will now initiate the migration cleanup operation to delete the volumes that were used by the vFiler unit on the old data storage system.

Before you begin

You can perform this task only on a dataset that has finished the migration cutover operation.

Steps

- 1. From the menu bar, click **Data > Datasets > Migration**.
- 2. Select the dataset named ExampleCo-DS-1 and make sure it has the status "Migrated, cleanup required."

This status indicates that the migration cutover operation is finished and the dataset is switched over to the destination storage system, including the data, backup versions, backup relationships, and DataFabric Manager history for the volumes. However, old storage needs to be deleted.

- 3. Click Cleanup.
- **4.** In the confirmation dialog box, look at the list of volumes on the old, source storage system that are to be deleted and make sure that list is correct.
- **5.** Click **Apply** in the confirmation dialog box to begin the operation.

Result

You can track the progress of the operation in the Jobs window.

After you finish

Next, you must manually delete the following (for example, using FilerView) if they are not shared:

- Dynamic references in the old source dataset
- VLANs and IPspaces used by the old source vFiler unit

Manually delete old IPspace and VLAN

You will now manually delete the VLANs and IPspaces used by the old source vFiler unit.

Before you begin

You can perform this task only for a dataset that has finished the offline migration cleanup operation and only if the IPspace and the VLAN are not shared.

Steps

- 1. From the menu bar, click Data > Datasets > Migration.
- 2. Select the dataset named ExampleCo-DS-1 and make sure it has the status "Not started." This status indicates that the migration cleanup operation is finished.
- 3. Using an application like FilerView, delete the IPspace and VLAN in the old storage system named storage-EC-8.

Dataset online migration example workflow

This workflow describes the implementation of an online migration of a dataset's primary storage from one storage system to another. In contrast to offline migration, online migration causes no interruption in the availability of the data being migrated, not even during the migration cutover operation.

For descriptions of some of the concepts and terminology associated with the N series Management Console provisioning capability, see *Introduction to provisioning and protection* on page 11.

For additional task, conceptual, and reference information associated with online migration of datasets and online migration of vFiler units, see the N series Management Console Help.

The following list describes the tasks you need to complete for this example online dataset migration workflow:

Steps

- 1. Plan to implement online migration on page 50
- 2. Add a physical resource as the online migration destination on page 54
- 3. Start the dataset online migration and automated cutover on page 54
- 4. Roll back a dataset online migration (optional) on page 56
- **5.** Clean up the dataset online migration on page 57
- 6. Manually finish online migration cleanup on page 58

Plan to implement online migration

When you plan to perform a dataset online migration, consider the specific requirements of this migration job and the configuration of the system on which you are performing this task.

Dataset online migration example setup

This example is based on the assumption that you are a storage administrator who is managing a shared SAN storage infrastructure over a high-speed IP network. In this example, you migrate a dataset's primary storage to a new storage location without disrupting user access to the data being migrated.

Note: Although in this example workflow the data being migrated is in a SAN storage environment, you can carry out online migration of data residing in either SAN or NAS storage environments.

Your dataset is running out of space and needs to move to a different storage system. Because a dedicated vFiler unit is assigned to the dataset, the dataset is automatically enabled for migration. (The N series Management Console provisioning capability migrates vFiler units. Therefore, if your

dataset has a vFiler unit assigned as a host, and if all of the storage for the dataset is provisioned through that vFiler unit, you can migrate the dataset to another storage system.)

Because in this example the data that is being migrated requires constant user access, you must keep that data online and available while performing this migration.

In this example, the one storage system in the resource pool is not large enough for the dataset. Therefore, you also have to add an additional system to the resource pool to use as the dataset migration destination.

Dataset online migration example assumptions

The descriptions and procedures in the online migration example are based on a set of assumptions about licenses, resource pools, and other elements of your system configuration.

- General assumptions on page 51
- *Licenses enabled* on page 52
- Resource pool on page 52
- *vFiler unit* on page 52
- *Provisioning policy* on page 53
- *Dataset* on page 53

General assumptions

For this example, assume the following:

- This workflow assumes that you have already created a dataset and provisioned it through a vFiler unit similar to the dataset and vFiler units described in the SAN resource provisioning example workflow on page 27; however, to support online migration, this workflow requires the following variations from the original description:
 - Online migration is enabled for the dataset.
 - Synchronous SnapMirror is licensed on the source and destination storage systems.
 - The size of the provisioned volumes to be migrated is 10 GB (with the exception of the vFiler unit root volume).
 - The number of provisioned volumes to be migrated (including the vFiler root volume) is 20.

Note: The N series Management Console provisioning capability supports online migration of a maximum of 20 volumes of data that resides on N7000 series gateways. The online migration capacity is different for data residing on other models of gateways.

- An MTU size of 9000 bytes is set for the VLANs associated with the attached vFiler units.
- You are adding a new storage system to your existing resource pool in a SAN-over-iSCSI environment.
- All hardware you intend to use is configured with appropriate licenses, protocols, settings, and so forth.
- Aggregates of available storage space are preconfigured on the new storage system.
- You are assigned the following RBAC roles:

- DFM.Resource.Control on the source vFiler unit and on the destination storage system
- DFM.Dataset.Write on the dataset
- DFM.Global.Read on the source vFiler unit and on the destination storage system
- No premigration or postmigration scripts will be used.
- For any property not specified in this example, the default value applies.
- None of the data to be migrated resides on storage that uses ATA disk types.

Licenses enabled

For this example, verify that the following licenses are enabled on each of the source and destination storage systems:

- DataFabric Manager 4.0 or later
- Data ONTAP MultiStore license
- Synchronous SnapMirror license
- iSCSI license

Resource pool

For this example, use the following information when adding a physical resource to the resource pool that you created in the provisioning workflow example:

- Details (general properties)
 - Name: ExampleCo-RP
 - Description: Res pool for ExampleCo vFiler units
- Allocate physical resource: storage-EC-9
- · Resource label: None used

vFiler unit

For this example, the vFiler unit attached to dataset on which you perform online migration has the following properties:

- Name: EC-vFiler-4
- IP space: default-ipspace
- Allowed protocols: iSCSI
- Hosting storage system: ExampleCo-RP
- IP address of the vFiler unit: 172.26.18.10
- Network interface: e4-20
- MTU: maximum transmission unit size of **9000 bytes**
- Contains volume members only, maximum of 20, each 10 GB or larger
- Network route: All static routes that are present in the source vFiler unit's IPspace are to be migrated.

Provisioning policy

For this example, assume a provisioning policy with the following properties:

- General properties
 - Policy name: **provpol-san**
 - Policy description: any meaningful description, such as SAN over iSCSI with LUNs
 - Storage type: SAN
- Disk failure protection: **RAID-DP** (Double disk failure)
- Deduplication: Select Enable deduplication on volumes and Automated deduplication.

Dataset

For this example, assume the dataset that you want to migrate is named **ExampleCo-DS-A** with the following properties:

- Dataset name: ExampleCo-DS-A
- Provisioning policy: provpol-san
- Export setting: Turn on iSCSI
 - Initiator ID:iqn.1989-03.com.isinit:app1
 - Host operating system: Windows
- Automated online migration: Enable automated online migration
 - IP address for data access: 172.26.18.10
 - Network mask: 255.255.255.10

Note: These are the same addresses that are used for creating the vFiler unit that hosts the storage for the dataset.

- Resource pool: ExampleCo-RP
- vFiler unit: EC-vFiler-4
- Provision LUNs
 - LUN name: EC-lun
 - LUN description: Any useful description
 - LUN space: 1 GB
 - Maximum space of Snapshot copies: 2 GB (default)
 - Initial space of Snapshot copies: 1 GB
- Resource selection: Allow the system to automatically select a resource from the attached resource pool.

Add a physical resource as the online migration destination

Before you start this example online migration, you must add a storage system to the dataset's resource pool so that it can host the dataset when the dataset is migrated. The new storage system you add is used as the destination storage system for the online migration.

Before you begin

Before adding physical resources to the resource pool, you should have available the following information necessary to edit the resource pool properties:

- The name of the resource pool
- The name of the storage system you want to add

Steps

- 1. From the menu bar, click **Data** > **Resource Pools**.
- 2. From the list of available resource pools, select the resource pool named ExampleCo-RP.
- 3. Click Edit to open the Properties sheet; then click Physical Resources.
- **4.** Select the storage system named storage-EC-9 from the list named "Available physical resources;" then click > to add it to the list named "Resources in this resource pool."
- 5. Click OK.

Result

The resource pool's configuration is modified and saved and the destination storage system is added to the resource pool.

After you finish

You will next start the dataset online migration.

Start the dataset online migration and automated cutover

You will now start the migration of the dataset, which begins a baseline transfer to the destination storage system. In this example, you also enable the automated cutover operation to take place after the migration start operation.

Before you begin

Have available the name of the destination storage system.

To ensure a successful rollback operation, if one is required, confirm that at least one Snapshot copy of the data to be migrated exists on the migration source.

About this task

You can cancel a dataset migration any time during the migration start operation.

Steps

- 1. From the menu bar, click Data > Datasets > Migration.
- 2. Select the dataset named ExampleCo-DS-A and make sure it has the status "Not started."

This status indicates that the dataset meets the dataset migration requirements and that a migration is not already in progress.

Note: As noted in the workflow assumptions description, the dataset has its online migration option enabled.

- 3. Click Start migration to start the Dataset Migration wizard.
- **4.** Complete the wizard, using the following values:
 - Destination storage system: **storage-EC-9** (the newly added storage system)
 - Provisioning policy: **provpol-san** (same as currently assigned to the dataset)
 - Interface IP address of the vFiler unit: 172.26.18.10 (same as currently configured for the vFiler unit)
 - Netmask: 255.255.255.10 (same as currently configured for the vFiler unit)
 - VLAN ID: e4-20 (same as currently configured for the vFiler unit)
 - Bandwidth limit: 1 MB per second
 - Automatic cutover: Automatic cutover enabled
 - Network route: Migrate all static routes that are present in the source vFiler unit's IPspace.
- 5. Confirm the details of the migration, and then click **Finish** to complete the wizard.

You can check the job progress displayed in the Tracking Dataset Migration Job display popup window or in the Jobs tab on the Datasets window Migration tab.

Result

The N series Management Console provisioning capability performs the following operations:

Migration start

The transfer of primary data from its migration source location to its migration destination location. For large bodies of data, this entire operation might require several weeks to complete. While this operation is in progress, data remains active and available at the source locations.

Automated migration cutover

The operation in which the transferred data is made inactive at the source location and active at the destination location. Because in this example, automated cutover is enabled, the cutover operation begins automatically after the migration start operation is successfully completed and as soon as storage system CPU usage and disk busy conditions permit. Because the dataset is enabled for online migration, the users accessing this data experience no period of data unavailability, even during the cutover operation.

After the cutover operation is complete, the dataset is listed on the Migration tab with the status "migrated, cleanup required."

After you finish

After the migration start operation and migration cutover operation are successful and complete, the usual practice is to wait a few days and observe whether the results of the migration are satisfactory or need to be reversed

- If, after cutover, migration to the destination location causes no user access or data protection
 operation problems, then you can start the migration cleanup operation, to delete all the old
 volumes from the original source location.
- If, after cutover, you determine that you need to reverse the migration and restore the original source as the active location, you can start the rollback operation.

Roll back a dataset online migration (optional)

If you determine, after the completion of the online migration start and migration cutover operations, that the migration needs to be reversed and that the original source location needs to be restored as the active data location, you have the option of rolling back an online migration.

Before you begin

Verify that the dataset's migration status is "Migrated, cleanup required."

About this task

For the sake of this example, let us assume that after a successful migration cutover, performance problems experienced by the large number of users attempting to access the migrated data at the new location force a temporary migration rollback to the original location until the slow access problems at the new location can be resolved.

Steps

- 1. From the menu bar, click **Data > Datasets > Migration**.
- 2. Select the ExampleCo-DS-A dataset and click Roll back.
- **3.** In the confirmation dialog box, click **Yes**.

Result

Rollback performs the following actions:

- Updates the volumes at the original migration source location with any data changes made since the online migration start and migration cutover operation.
- Restores the original migration source location as the active location.
- Deletes the destination vFiler unit.
- Sets the status for the **ExampleCo-DS-A** dataset to "Rolled back."

After you finish

In this example, assume that a few days after the roll back operation is performed, the problems causing slow user access to the new location are resolved.

At this point, you can select the rolled back dataset and manually start the cutover operation. The cutover operation performs the following actions:

- Updates the migration destination with any data changes made since the rollback operation was last completed.
- Restores the migration destination as active location.
- Sets the status for the ExampleCo-DS-A dataset to "Migrated, cleanup required."

Clean up the dataset online migration

After you have determined that online migration to a destination location is working well, you can initiate the migration cleanup operation to delete the volumes that were used by the vFiler unit on the old data storage system.

Before you begin

You can perform this task only on a dataset that has finished the manual migration cutover operation or the automatic migration cutover operation.

Steps

- 1. From the menu bar, click Data > Datasets > Migration.
- 2. For this example, select the dataset named "ExampleCo-DS-A" and make sure it has the status "Migrated, cleanup required."

This status indicates that the migration cutover operation is finished and the dataset is switched over to the destination storage system, including the data, backup versions, backup relationships, and DataFabric Manager history for the volumes. However, old storage needs to be deleted.

- 3. Click Cleanup.
- 4. In the confirmation dialog box, look at the list of volumes on the old, source storage system that are to be deleted and make sure that list is correct.
- 5. Click **Apply** in the confirmation dialog box to begin the operation.

Result

You can track the progress of the operation in the Jobs window. When the operation is complete, the status of the ExampleCo-DS-A dataset is "Not started."

After you finish

Next you must manually delete the following (for example, using FilerView) if they are not shared:

- · Dynamic references in the old source dataset
- VLANs and IPspaces used by the old source vFiler unit

Manually finish online migration cleanup

After automated cleanup deletes the volumes and most of the source data elements from the original source location, you must manually delete the VLANs and IPspaces used by the old source vFiler unit.

Before you begin

You can perform this task only for a dataset that has finished the migration cleanup operation and only if neither the IPspace nor the VLAN are shared.

Steps

- 1. From the menu bar, click Data > Datasets > Migration.
- **2.** Select the dataset named ExampleCo-DS-A and make sure it has the status "Not started." This status indicates that the migration cleanup operation is finished.
- **3.** Using an application like FilerView, delete the IPspace and VLAN in the old storage system named storage-EC-8.

Protection example workflow

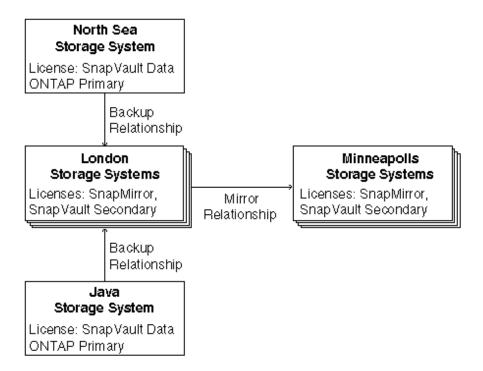
This is a step-by-step example of how you might configure your system to protect your user data.

For descriptions of some of the concepts and terminology associated with the N series Management Console data protection capability, see *Introduction to provisioning and protection* on page 11.

For administrative tasks and additional reference and conceptual information associated with the N series Management Console data protection capability, see the N series Management Console Help.

Steps

- 1. Plan to implement data protection on page 59
- 2. Configure the host storage systems on page 64
- 3. Create the resource pools on page 66
- 4. Evaluate and modify the protection schedules on page 68
- 5. Create the protection policy and modify the settings on page 71
- **6.** *Create groups* on page 78
- 7. Create datasets on page 80
- **8.** Assign the protection policy to the datasets on page 81
- 9. Import discovered relationships on page 82
- **10.** Verify the protection of the dataset on page 83
- 11. Configure alarms on page 84


Plan to implement data protection

When you plan to implement dataset protection, consider the specific requirements of this protection job, the best protection strategy to follow, and the initial configuration of the storage network on which you are configuring and performing data protection.

Protection example setup

For this example workflow, assume you are a storage architect for an energy company that needs to protect its seismic test data. The files of seismic test data are on storage systems on oil platforms in the North Sea and off the coast of Java.

The seismic test data files at the North Sea data center are currently protected by SnapVault and SnapMirror but are not yet managed with a dataset. The seismic test data files at the Java data center are not yet protected, but you intend to establish a backup relationship to storage in London and a mirror relationship to storage in Minneapolis.

Develop a protection strategy

Before implementing a data protection plan, you must work out a strategy for protecting the seismic test data.

For descriptions of the basic concepts and terminology associated with the N series Management Console data protection capability, see *Introduction to provisioning and protection* on page 11 if possible.

Your strategy for protecting the data addresses a variety of considerations.

Schedule considerations

To meet the restore requirements of the data, you determine that the data should be backed up to the data center at the company headquarters in London and mirrored to the company's Minneapolis data center.

- How long do you need to retain backups of the data to meet its restore requirements?
- What are the preferred times of day to perform remote backups and mirror copies, based on network and resource loads?
- How often does data on a primary node need to be copied to a destination node to ensure that data
 on the destination node is never older than the maximum age mandated by your protection
 requirements?

Bandwidth considerations

What is the volume of data to back up and the available bandwidth to transfer copies of the data to a destination system?

Host considerations

Which hosts in London and Minneapolis have similar performance and Quality of Service levels?

Notification considerations

Which events require alarms and who needs to be contacted for them?

RBAC considerations

Your administrator account already has the roles and capabilities assigned to it that you need to perform all the tasks necessary to implement the data protection strategy. See Administrator roles and capabilities on page 147 for a list of RBAC roles required for protection tasks.

Protection example assumptions

This section identifies the configurations, settings, and properties that are used in this protection example workflow.

- General assumptions on page 61
- Licenses enabled on page 61
- *Host properties* on page 62
- Protection schedule and policy properties on page 62
- Resource pool properties on page 63
- *Dataset properties* on page 63

General assumptions

For this workflow, assume the following:

- You are configuring a storage environment of NAS over CIFS and NFS protocols.
- All hardware you intend to use has been configured with appropriate licenses, protocols, settings, and so forth.
- For any property not specified in this example, use the default value.

Licenses enabled

For this example workflow, you need the following licenses enabled:

- DataFabric Manager license
- Data ONTAP licenses:
 - SnapVault on the primary storage
 - SnapVault on the secondary storage

- SnapMirror on the tertiary storage
- Open Systems SnapVault, if you are running SnapVault software on an operating system other than Data ONTAP

Host properties

For this example workflow, assume use of the following properties for your hosts:

- Primary data needing protection
 - Stored on North Sea and Java storage systems
 - North Sea and Java Data ONTAP licenses enabled: SnapVault primary
- Backup relationship
 - Backups of North Sea and Java systems are stored on London storage systems.
 - London Data ONTAP licenses enabled: SnapVault secondary and SnapMirror
 - Host name used in workflow: london14-geo
- Mirror relationship
 - Mirrored copies from London are stored on Minneapolis storage systems.
 - Minneapolis Data ONTAP licenses enabled: SnapVault secondary and SnapMirror

Protection schedule and policy properties

For this example workflow, assume use of the following properties when creating the schedules and the protection policy:

- Policy name: Use "Back up, then mirror" for this workflow
- Primary data node

For this example, use the following default settings for the Primary node:

Local Backup schedule: Sunday at midnight with daily and hourly

When applied to the Primary data node, this schedule creates the following:

Hourly local backups each hour

A daily local backup each day at midnight

A weekly local backup at midnight on Sundays

• Retention

Hourly: 1.0 day Daily: 1.0 week Weekly: 2.0 weeks Monthly: 0.0 weeks

• Lag

Warning Threshold: 1.5 days Error Threshold: 2.0 days

• Connection between the Primary data node and the Backup node

For this workflow, use the following settings for the Primary data to Backup connection:

• Backup schedule: Sunday at 8:00 PM plus daily at 8 AM/PM.

You will need to copy and modify an existing schedule

Lag

Warning Threshold: 1.0 days Error Threshold: 1.5 days

Backup node

For this workflow, use the following settings for the Backup Retention Durations:

Hourly: 0.0 day Daily: 2.0 weeks Weekly: 12.0 weeks Monthly: 14.0 weeks

• Connection between the Backup node and the Mirror node

For this workflow, use the following settings for the Backup to Mirror connection:

• Mirror schedule: Hourly on the half hour

You will need to select this existing schedule to replace the default.

• Lag

Warning Threshold: 2.0 hours Error Threshold: 3.0 hours

Resource pool properties

For this workflow, assume use of the following properties when creating the resource pools:

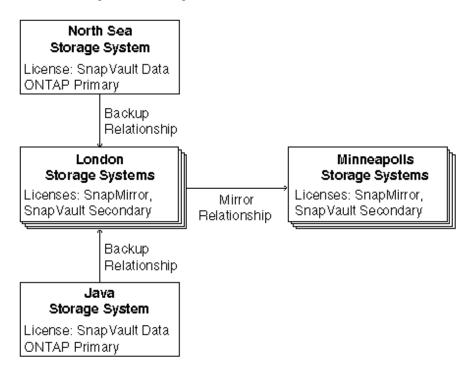
- Group: Both pools will be initially created under the default Global group and later added to the Datasets: Test Data group after that group is created.
- Details (general properties)
 - Name: Use London Backup and Minneapolis Mirror
 - Description: Any meaningful description
- Allocate physical resources:

Select the resources to be included in the resource pool. These resources must meet the licensing and configuration requirements of your provisioning and protection plan.

Dataset properties

For this workflow, assume use of the following properties when creating and protecting the datasets:

- Name: One dataset will be named North Sea Seismic Test Data and the other will be named Java Seismic Test Data
- Group: Both datasets will be contained in a new "Datasets:Test Data" group, which will be created under an existing "Data Protection" parent group.
- Protection policy: Use "Back up, then mirror."
- Resources: Select the default, "Use a provisioning policy."
- Provisioning policy: Use the default provisioning policy.


• Resource pools: Select London Backup and Minneapolis Mirror.

Configure the host storage systems

Your next step is to configure the hosts for use in your protection plan. This includes setting the login and NDMP credentials for the hosts and ensuring that the appropriate licenses are enabled on each host according to the purpose you assign to the host in your protection strategy.

About this task

Because you plan to back up the North Sea and Java seismic test data to the London data center and mirror the backup to the Minneapolis data center, enable Data ONTAP licenses as follows:

North Sea storage system

This storage system stores the North Sea seismic test data in need of protection, so enable the SnapVault Data ONTAP Primary license on this

system.

Java storage system

This storage system stores the Java seismic test data in need of protection, so enable the SnapVault Data ONTAP Primary license on this system.

London storage systems

These storage systems are to store backups for the seismic data, so enable the SnapVault Data ONTAP Secondary license on these storage systems. Also

enable the Data ONTAP SnapMirror license on these systems because the backups they store are mirrored to Minneapolis.

Minneapolis storage systems

These storage systems are to store mirror copies of the London storage systems, so enable the SnapMirror license on these storage systems. The Minneapolis storage systems also require the SnapVault Data ONTAP Secondary license so that you can restore data from these storage systems if the London storage systems are unavailable.

Before beginning this procedure, you need to gather the necessary Data ONTAP license codes.

Steps

- 1. From the menu bar, click Hosts > Storage Systems.
- 2. For each host that you plan to use, select the host name from the list and verify the following:
 - System Status is Up and Login Credentials are Good.
 - NDMP Status is Up and NDMP Credentials are Good.

For the instructional purposes of this example, you find that credentials are set and valid for most of the hosts, but one host you plan to use, minn8-geo, has bad credentials that you need to update.

- **3.** Select **minn8-geo** from the list of hosts.
- 4. Click Edit.

The properties sheet for the minn8-geo host appears, displaying the current credential information for the host.

5. Update the Login Credentials and NDMP Credentials fields with valid user names and passwords; then click OK.

The database is updated with the credentials for the selected host. Verify in the host list that the credentials for minn8-geo are now good.

- **6.** For each host that you plan to use, select the host name from the list and verify the following:
 - The necessary SnapMirror and SnapVault licenses are enabled.
 - The CIFS or NFS networking protocols are configured, as appropriate.

You notice that one of the London hosts that you plan to use, london14-geo, is configured with the SnapMirror license but not the SnapVault secondary license.

7. Select **london14-geo** from the list of hosts.

The licensing status for london14-geo is displayed in the Licenses area.

8. Click Edit; then click Licenses.

The Licenses tab of the properties sheet for the selected host appears.

9. Type the SnapVault secondary license in the New License field; then click Add.

The SnapVault secondary license is configured on london14-geo. Note that it is not necessary to indicate which service the code enables; the code is matched automatically to the appropriate service license.

Result

You have configured the hosts with login and NDMP credentials and Data ONTAP licenses.

After you finish

The next step is to organize into resource pools the hosts that the N series Management Console data protection capability is to use to provision storage for backup and mirror copies.

Create the resource pools

Organize the London storage system hosts into a resource pool for backups and the Minneapolis storage system hosts into a resource pool for mirror copies. The N series Management Console data protection capability can provision storage out of these resource pools, as needed.

Before you begin

Ideally, hosts in a resource pool are interchangeable in terms of their acceptability as destinations for backups or mirror copies. When developing the protection strategy for the seismic test data, you identified London and Minneapolis hosts with similar performance and quality of service levels that would be suitable members of the same resource pool.

You have already created aggregates of unused space on hosts you intend to assign to resource pools. This ensures that there is adequate space to contain the mirror copies and backups.

Before creating the resource pool, you need to gather the information necessary to complete the Add Resource Pool wizard:

- The name of each resource pool to be created
 The names should indicate the location and purpose (storing backups or mirror copies) of each resource pool. For example, you use the name London Backup for the resource pool of hosts used to store backups in London.
- The time zone that the policy schedules should assume when timing protection events
 For example, setting the time zone of the London Backup resource pool to Europe/London
 specifies that scheduled mirror operations originating from London are to be interpreted in the
 London time zone.
- The physical resources to be included in the resource pool
- The space thresholds for event generation
- The aggregate overcommitted thresholds for event generation

Steps

1. From the menu bar, click **Data** > **Resource Pools**.

The Resource Pools window appears.

2. Click Add.

The Add Resource Pool wizard starts.

3. Complete the steps in the wizard to create the **London Backup** resource pool.

Use the following settings:

• General properties:

Name: London Backup

• Physical resources:

Group: Global

Resource type: Hosts

Select the storage system hosts that you previously verified have good credentials and have SnapVault Secondary and SnapMirror licenses enabled.

- Resource pool label: none
- 4. Confirm the details of the resource pool, and then click **Finish** to complete the wizard.
- 5. Click Add to start the Add Resource Pool wizard again.
- 6. Create another resource pool using the name Minneapolis Mirror and the same settings you used for the London Backup resource pool.
- 7. Confirm the details of the resource pool, and then click **Finish** to complete the wizard.

Result

The London Backup and Minneapolis Mirror resource pools can be viewed in the list in the Resource Pools window

After you finish

You next evaluate and modify the protection schedules you want to later associate with a protection policy.

Evaluate and modify the protection schedules

You now determine whether you can use existing schedules to meet your protection strategy needs or if you need to modify or create new schedules. The schedules are later assigned to the protection policy you choose.

About this task

As part of developing your protection strategy, you determined that you want to back up and then mirror-copy your data and that you need the following schedules for your backup and mirror jobs:

- On the primary data node: hourly, daily, and weekly backups
- For the primary-to-backup connection: back up twice daily and once weekly
- For the backup-to-mirror connection: hourly every day

The North Sea seismic test data and the Java seismic test data can use the same backup schedules, because their backup schedule requirements and constraints (recovery point objective, bandwidth, backup window, and so on) are the same.

Note: As you evaluate the schedules for the nodes and connections, make a notation of the schedules you decide to use because you need that information later.

Step

1. From the menu bar, click Policies > Protection > Schedules.

The Schedules tab on the Protection Policies window is displayed.

After you finish

The next task is to decide which schedules you need and whether you can use or modify existing schedules to meet your needs.

Determine the schedule for the primary data node

Evaluate the schedules already available in the N series Management Console data protection capability to determine if you can use any of them for local backups of the primary data, or if you need to modify an existing schedule.

Steps

1. Assess what schedule you need for local backups of your primary data.

You determine that you need the following backups:

- Local backups every hour
- Daily local backups each day at 12:00 a.m.

- Weekly local backups each Sunday at 12:00 a.m.
- 2. From the Schedules tab, review the list of existing schedules and their descriptions to determine if you can use any of them for primary data backups.

You determine that the schedule Sunday at midnight with daily and hourly meets your needs and you make note of this information.

After you finish

Keep the Schedules tab open so that you can next review schedules for remote backups.

Determine the schedule for the connection between the primary and backup nodes

Evaluate the schedules already available in the N series Management Console data protection capability to determine if any of the schedules meet the needs for the primary-to-backup connection, or if you need to modify an existing schedule.

Steps

1. Assess what schedule you need for remote backups of your primary data.

You determine that you need the following backups:

- Daily remote backups at 8:00 a.m.
- Daily remote backups at 8:00 p.m.
- Weekly remote backups each Sunday at 8:00 p.m.
- 2. From the Schedules tab, review the list of existing schedules and their descriptions to determine if you can use any of them for remote data backups.

You determine that the weekly schedule "Sunday at 8:00 PM plus daily" is the closest to meeting your needs. It performs a weekly backup every Sunday and daily backups, all at 8:00 p.m. However, you need to add the 8:00 a.m. backup.

You realize that since the weekly schedule has a daily backup at 8:00 p.m., it accesses the "Daily at 8:00 PM" schedule to define when daily operations occur. So you decide to modify this daily schedule to add the 8:00 a.m. backup.

3. Select the schedule "Daily at 8:00 PM" and click Copy.

Directly modifying the "Daily at 8:00 PM" schedule would impact any policy already using that schedule. It would also impact any policy using the schedule "Sunday at 8:00 PM plus daily," because that weekly schedule uses "Daily at 8:00 PM."

To avoid impacting other policies, you decide to copy "Daily at 8:00 PM" to create a new daily schedule, "Daily at 8:00 AM and PM."

4. Select Copy of Daily at 8:00 PM and click Edit.

- 5. On the General tab, change the schedule name to the following value: Daily at 8:00 AM and PM.
- **6.** Click the **Daily Events** tab; then click **Add**.
- 7. Double-click the row that was added to the list and type the following value: 8:00 AM 8:00 p.m. and 8:00 a.m. both show up in the Daily Events list and in the graph.
- 8. Click OK.
- 9. Select the Sunday at 8:00 PM plus daily schedule, and then click Copy.

You now copy and rename the weekly schedule that you intend to use, so that it does not impact other policies that use the "Sunday at 8:00 PM plus daily" schedule.

10. Click Copy of Sunday at 8:00 PM plus daily, and then click Edit.

The Properties sheet opens.

- 11. On the General tab, change the schedule name to the following value: Sunday at 8:00 PM plus daily at 8 AM and PM.
- 12. Make note of the names of these daily and weekly schedules.

After you finish

Keep the Schedules tab open so that you can next review schedules for remote backups.

Determine the schedule for the connection between the backup and mirror nodes

Evaluate the schedules available with the N series Management Console data protection capability to determine if any of the schedules meet the needs for the backup node-to-mirror node connection.

Steps

1. Assess what schedule you need for the mirror copies of your backed-up data.

You determine that you need to perform a mirror operation more than once a day.

Although the seismic test data is backed up once a day, the primary data is maintained in two different time zones and, therefore, is backed up at different times. A single mirror operation each day does not provide adequate protection because some data would be too old by the time it was mirrored to meet its recovery point objective.

You decide to mirror the seismic test data backup each hour, but on the half hour, because data is backed up to the Backup node on the hour. The 30-minute difference in the schedules gives the backup operation ample time to complete before the mirror operation begins.

2. From the **Schedules** tab, review the list of schedules and their descriptions to determine if you can use an existing schedule for the mirror copies.

You determine that the existing daily schedule, "Hourly on the half hour," meets your needs by providing hourly mirror operations and you make note of this information.

You are not concerned that there are 24 mirror operations each day even though the data to be mirrored is updated only twice a day. Mirror operations send only updated data to the Mirror node. When there is no updated data since the last mirror operation, no load is put on the network.

Result

You have selected and modified all the schedules you need.

After you finish

You next create a new policy by copying an existing policy and modifying the policy's settings.

Create the protection policy and modify the settings

As part of your protection strategy, you want to back up, and then mirror, your data. You now copy and rename the existing "Back up, then mirror" protection policy.

About this task

Because you previously created new schedules, you know that you need to associate the new schedules with the "Back up, then mirror" policy. The existing "Back up, then mirror" policy might already be associated with a dataset. Therefore, you do not want to modify the existing policy because this could negatively impact any dataset using that policy. You instead copy the existing "Back up, then mirror" policy so that you can modify the policy's schedules and other settings.

Each protection policy can have a different schedule associated with each node and connection of the policy. Each schedule has its own retention or lag settings. You can modify the schedule and its settings for each component of the policy, which you do in the following tasks.

Steps

- 1. From the menu bar, click **Policies > Protection > Overview**.
 - The Overview tab on the Protection Policies window is displayed.
- 2. Select the **Back up, then mirror** policy from the list, and then click **Copy**.
 - "Copy of Back up, then mirror" appears in the policy list, highlighted.
- 3. With "Copy of Back up, then mirror" still highlighted, click Edit.
 - The Edit Properties sheet opens to the general properties.
- 4. Change the name of the policy to Test Data: Back up, then mirror.
- 5. Retain the description of the policy.

You determine that the description is adequate.

6. Click Apply.

The name change is applied to the policy, but the Properties sheet remains open.

After you finish

With the policy Properties sheet still open, you will next associate the schedules, and evaluate and modify the policy settings, for each node and connection of this policy.

Evaluate the primary data node

With the Edit Properties sheet still open for the "Back up, then mirror" policy, review the information for the primary data node.

About this task

You previously determined that the local backup schedule **Sunday at midnight with daily and hourly** meets your needs for the primary data. You will now evaluate how long you want the local backups retained and what the lag thresholds should be.

Lag thresholds represent the maximum acceptable lag between the current time on the primary node and the timestamp of the last successfully completed local backup copy on that node. Lags that exceed the specified period trigger either warning or error messages.

Steps

1. Click Nodes and Connections in the Properties sheet.

The Nodes and Connections information appears. A graphical representation of the "Back up, then mirror" policy is displayed above the policy settings.

2. From the list, select **Primary data**.

Details about the primary node appear in the information area. The graphic displayed in the information area has the primary node highlighted.

3. Retain the default local backup schedule Sunday at midnight with daily and hourly.

You previously determined that this schedule meets your data protection needs for local backups.

4. Assess how long you need local backups of your primary data retained, based on the local backup schedule.

You determine the following:

- The backup schedule includes daily local backups each hour and you want to retain 24 hourly local backups.
- The backup schedule includes a daily local backup that you want to retain for seven days.
- The backup schedule includes a weekly local backup that you want to retain for 14 days.

- The backup schedule includes no monthly local backups, so you have no monthly backups to be retained.
- a) Determine the default behavior of the retention settings.

The default settings retain the following:

Hourly: 1.0 day Hourly local backups for one day Daily: 1.0 week Daily local backups for one week Weekly local backups for two weeks Weekly: 2.0 weeks

Monthly: 0.0 weeks No monthly backups

b) Decide what action to take.

The current retention duration settings for local backups meet the protection needs of the seismic test data, so you leave them unchanged.

5. Assess when you want Lag events generated for local backups of your primary data.

You determine the following:

- You do not need an event generated for the hourly backups.
- You want to receive a warning message after one daily backup failure.
- You want to receive an error message after two successive local backup failures.
- a) Determine the event generation behavior of the default Lag settings.

The local backup operations on the primary node include hourly local backups, a daily local backup each day at midnight, and a weekly local backup at midnight on Sundays.

The default settings do the following:

Lag Warning With daily backups at midnight, a lag warning threshold of 1.5 Threshold: 1.5 days days means that a warning is issued after one local backup

failure

Lag Error Threshold: A lag error threshold of 2.0 days means that an error is issued

after two successive daily local backup failures. **2.0** days

b) Decide what action to take.

The default Lag Warning Threshold and Error Threshold meet your needs. You decide to use the default settings.

6. Consider whether you want to use a backup script.

Your protection strategy does not require use of a backup script, so you leave the associated fields blank.

Note: Leave the Nodes and Connections tab open for the next task.

After you finish

With the Nodes and Connections tab open, you next evaluate the primary-to-backup node connection.

Evaluate the connection between the primary and backup nodes

With the Edit Properties sheet still open for the "Back up, then mirror" policy, review the information for the connection between the primary and backup nodes.

About this task

You previously determined that the default backup schedule **First Sunday at 8:00 PM with weekly and daily** did not meet your needs, so you created a new schedule, which you now select. You also evaluate what the lag thresholds should be.

The lag thresholds generate events based on the amount of lag time between remote backup data being sent and successfully backed up to the backup node.

Steps

1. From the Nodes and Connections list, select the **Primary data to Backup** connection.

Details about the connection appear in the information area. The graphic displayed above the information area has the selected connection highlighted.

2. From the Backup schedule list, select Sunday at 8 PM plus daily at 8 AM/PM.

This is the schedule you previously created.

3. Consider whether you want to use a throttle schedule.

Your protection strategy does not require use of a throttle schedule, so you retain the default setting of "none."

4. Assess when you want Lag events generated.

You determine the following:

- You want to receive a warning message after two successive remote backup transfer failures, so you need a lag warning threshold for the backup connection of 1.0 day.
- You want to receive an error message after three successive remote backup transfer failures, so you need a lag error threshold for the backup connection of 1.5 days.
- a) Determine the event generation behavior of the default Lag settings.

The most frequent operation over this connection is the daily remote backup sent to the Backup node at 8:00 a.m. and 8:00 p.m.

The default settings do the following:

Lag Warning Threshold: 1.5 days With remote backups 12 hours apart, a lag warning threshold of 1.5 days means that a warning is issued after three successive

remote backup transfer failures.

Lag Error Threshold: **2.0** days

A lag error threshold of 2.0 days means that an error is issued after four successive remote backup transfer failures.

b) Decide what action to take.

The default settings do not meet your needs, so you must change them.

- 5. Change the lag warning threshold to 1.0 day.
- 6. Change the lag error threshold to 1.5 days.
- 7. Click the **Preview** tab.

The changes you made are checked for conformance issues.

8. Click Apply.

Do not click OK.

The changes you made are applied to the policy, but the Properties sheet remains open.

After you finish

With the Properties sheet open, you next evaluate the backup node.

Evaluate the backup node

With the Edit Properties sheet still open for the "Back up, then mirror" policy, review the information for the backup node.

About this task

You now evaluate how long you want the remote backups retained.

The backup node does not have a schedule associated with it.

Steps

1. From the Nodes and Connections list, select **Backup**.

Details about the node appear in the information area. The graphic displayed above the information area has the selected node highlighted.

2. Assess how long you need remote backups retained, based on the remote backup schedule you are using.

You determine the following:

• The backup schedule does not include Hourly backups, so you do not have hourly backups to be retained.

- Your backup schedule includes two daily remote backups that you want to retain for two weeks, providing up to 28 daily remote backups.
- Your backup schedule includes a weekly remote backup. Because you are not using any monthly backups, you want to retain weekly backups for 12 weeks.
- Your backup schedule does not include monthly remote backups, so you do not have monthly backups to be retained.
- 3. Consider whether the "Backup retention durations" settings meet your protection requirements.
 - a) Determine the default behavior of the retention settings.

The default settings retain the following:

Hourly: 0.0 day No hourly remote backups are retained.

Daily: 2.0 weeks Daily remote backups are retained for two weeks.

Weekly: 8.0 weeks Weekly remote backups are retained for eight weeks.

Monthly: 14.0 weeks Monthly remote backups are retained for 14 weeks, but because no

monthly backups are created, this setting has no impact.

- b) Decide what action to take.
 - The hourly, daily, and monthly retention duration settings meet the protection needs of the seismic test data, so you leave them unchanged.
 - However, the weekly retention setting does not meet your needs and has to be increased.
- 4. Change the Weekly retention setting to 12 weeks.
- 5. Click the **Preview** tab.

The changes you made are checked for conformance issues.

6. Click Apply.

Do not click OK.

The changes you made are applied to the policy, but the Properties sheet remains open.

After you finish

With the policy Properties sheet still open, you next evaluate that backup-to-mirror connection.

Evaluate the connection between the backup and mirror nodes

With the Edit Properties sheet still open for the "Back up, then mirror" policy, review the information for the connection between the backup and mirror nodes.

About this task

Lag thresholds generate events based on the amount of lag time between remote backup data being sent and successfully backed up to the backup node.

Steps

1. From the Nodes and Connections list, select the **Backup to Mirror** connection.

Details about the connection appear in the information area. The graphic displayed above the information area has the selected connection highlighted.

2. From the Mirror schedule list, select **Hourly on half hour**.

This is the schedule you previously determined would meet your data protection needs.

3. Consider whether you want to use a throttle schedule.

Your protection strategy does not require use of a throttle schedule, so you retain the default setting of "none."

4. Assess when you want Lag events generated.

You determine the following:

- You want to receive a warning message after two successive mirror transfer failures, so you need a lag warning threshold of 2.0 hours.
- You want to receive an error message after three successive mirror transfer failures, so you need a lag error threshold of 3.0 hours.
- a) Determine the event generation behavior of the default Lag settings.

The most frequent operation over this connection is the Hourly mirror operation on the half hour

The default settings do the following:

Lag Warning Threshold: 1.5 days

With mirror operations one hour apart, a lag warning threshold of 1.5 days means that a warning is issued after 36 successive mirror

transfer failures.

Lag Error Threshold: 3.0 days

A lag error threshold of 3.0 days means that an error is issued

after 72 successive mirror transfer failures

b) Decide what action to take.

The default settings do not meet your needs, so you must change them.

- 5. Change the lag warning threshold to 2.0 hours.
- **6.** Change the lag error threshold to **3.0** hours.
- 7. Click the **Preview** tab.

The changes you made are checked for conformance issues. The system determines that there are no conformance errors or warnings.

8. Click Apply.

The changes you made are applied to the policy, but the Properties sheet remains open.

9. Click Nodes and Connections, and then click the Mirror node in the list.

You see that there are no settings to evaluate for the mirror node.

10. Click **OK** to save the changes you have made and exit the policy **Properties** sheet.

You return to the Protection Policies window.

Result

The modified policy "Test Data: Back up, then mirror" is available for use.

After you finish

You next create groups for your resource pools.

Create groups

Create a group to contain the **Java Seismic Test Data** and **North Sea Seismic Test Data** datasets and future datasets of test data, and add the **London Backup** and **Minneapolis Mirror** resource pools to an existing group of resource pools.

Before you begin

Before creating the new group for the datasets, you gather the information necessary to complete the Add Group wizard:

- The name of the group
 - You plan to create a group called **Datasets: Test Data**.
- The parent of the group, if there is one
 - You plan to create the new group under an existing parent group called Data Protection.
- The name and email address of the group owner

 You created the datasets that are to be members of the new group, so you decide that you are to be the owner of the new group.
- The names of the objects you want to assign to the group
 You assign the Java Seismic Test Data and North Sea Seismic Test Data datasets to the new
 group.

About this task

By default, datasets and resource pools belong to the Global group, which contains all objects managed by applications running with the DataFabric Manager server. You can configure alarms for objects in a group, including the Global group. However, if you want to configure alarms for a specific set of objects, you need to create a group that contains only those objects.

Putting objects in groups also makes it easier to locate information in the N series Management Console data protection capability. The Group selection list in the toolbar enables you to display only

the data that pertains to objects in a selected group, so creating a group can save time later by making it easier to find data in the interface.

The N series Management Console data protection capability provides dataset and resource pool events that you want to use to trigger alarms that notify you about data protection problems. You can configure alarms for datasets and resource pools in the Global group, but you want to configure alarms specific to datasets used for test data and resource pools used for data protection. (You do not need to configure alarms for the hosts; the individual hosts are already configured with alarms that alert storage managers of host-specific problems.)

Creating a group for each dataset would generate too many groups to be manageable, and putting all the datasets in a single group would not give you the granularity you want for filtering. Therefore, you decide to create a group specifically for datasets protecting the various kinds of test data that you expect to create in the future.

Because you can use resource pools to protect more than one dataset, you decide it is best to take the simplest approach and add the London Backup and Minneapolis Mirror resource pools to an existing group of resource pools used for data protection.

Steps

1. From the menu bar, click **Data** > **Groups**.

The Groups window is displayed.

2. From the Group Name list, select the **Data Protection** parent group.

Assume that someone had previously created the Data Protection parent group.

- **3.** Create the "Datasets:Test Data" child group.
 - a) Click Add.

The Add Group wizard starts.

b) When prompted, name the group:

Datasets:Test Data

Do not add members for now. Complete the steps in the wizard, and then click **Finish**.

The empty Test Data group is created.

- 4. Include the London Backup and Minnesota Mirror resource pools as members in the parent Data Protection group.
 - a) Back in the **Groups** window, reselect the **Data Protection** parent group.
 - b) Click Edit > Members.

The Edit Group property sheet opens to the Members tab.

- c) When the Member Selection dialog is displayed, select the **Resource Pools** category.
- d) From the list of available members, select **London Backup** and **Minneapolis Mirror**; then click the right-arrow button.

The London Backup and Minneapolis Mirror resource pools are added to the list of selected members.

e) Click OK.

The London Backup and Minneapolis Mirror resource pools are added to the Resource Pools group.

After you finish

You next create the datasets and add them to the Datasets: Test Data group.

Create datasets

You need to put the North Sea and Java seismic test data in datasets. The Java data is not yet protected. The North Sea data is currently protected by SnapVault and SnapMirror but not yet managed with the N series Management Console data protection capability.

Before you begin

Before creating a new dataset, you need to gather the necessary information to complete the Add Dataset wizard:

- The name of the new dataset
- The name and contact information for the owner of the dataset.
- The time zone the policy schedules should assume when timing protection events.
- The group, **Datasets: Test Data**, to which you want to add the dataset.
- The name of the policy you want to assign to the dataset.
- The names of the resource pools or other physical resources (such as individual storage systems or aggregates) that you want to assign to each node in the dataset.
- In a NAS environment, whether you want to CIFS or NFS.

About this task

You want to put the North Sea and Java seismic test data in separate datasets because the data is in different time zones and needs to have scheduled backup operations run in the local time zone. The time zone setting applied to each dataset determines how the schedules attached to each dataset are interpreted. However, because their protection requirements are otherwise identical, you can apply the same policy to both datasets.

Because the North Sea data has existing SnapVault and SnapMirror relationships, you need to create the dataset first and then import the North Sea data into its dataset. You can assign the unprotected Java data to the dataset as part of the process of creating its dataset.

Steps

1. From the menu bar, click **Data > Datasets**.

The datasets overview information is displayed on the Datasets window.

2. Click Add

The Add Dataset wizard starts.

3. Complete the steps in the wizard to create the Java Seismic Test Data dataset.

The new **Java Seismic Test Data** dataset appears in the list of datasets.

4. Click Add.

The Add Dataset wizard starts.

5. Complete the steps in the wizard to create the North Sea Seismic Test Data dataset, but this time do not select any data when the wizard asks you to specify which data to include in the dataset.

The new North Sea Seismic Test Data dataset appears in the list of datasets.

After you finish

You next attach the protection policy to the dataset.

Assign the protection policy to the datasets

After you create the datasets, you need to assign a protection policy to each dataset. The protection policy establishes the settings for how data backup and mirror operations should be performed.

Before you begin

Before assigning the protection policy, you gather the information necessary to complete the Dataset Policy Change wizard:

- The protection plan (backup, mirror, and so on) for this dataset You select the **Test Data: Back up, then Mirror** protection policy that you created.
- Whether you want to manually select individual physical resources to provision the nonprimary nodes, or whether you want to select resource pools to provision the nonprimary nodes.

Note: In this example, you provision by resource pool.

- Which resource pools you want to use Select the resource pools you created for the backup node and the mirror node, London Backup and Minneapolis Mirror.
- Which vFiler units you use for the backup node and the mirror node

Steps

- 1. From the menu bar, click the **Overview** tab on the **Datasets** window.
- 2. Select Java Seismic Test Data from the list of datasets.

3. Click Protection Policy to start the Dataset Policy Change wizard.

Note: To assign a resource pool to your nonprimary nodes, click the **Provision and attach** resources using a policy option when it is displayed.

4. Complete the wizard and click Finish.

The Java Seismic Test Data dataset now has a protection policy associated with it. You must now repeat the task for the North Sea Seismic Test Data dataset.

- 5. Select North Sea Seismic Test Data from the list of datasets.
- 6. Click **Protection Policy** to restart the **Dataset Policy Change** wizard.
- 7. Complete the wizard and click Finish.

Result

The North Sea Seismic Test Data dataset now has a protection policy associated with it.

After you finish

Verify that the protection policies are displayed in the Protection Policy column for the Java Seismic Test Data and North Sea Seismic Test Data datasets.

Import discovered relationships

You need to import the North Sea data and its SnapMirror and SnapVault relationships into the dataset you created for it.

About this task

When you import relationships into a dataset, you associate the relationships with specific connections in the dataset. For the North Sea data, you want to import its existing SnapVault relationship into the connection between the primary data and the backup node in the **North Sea Seismic Test Data** dataset. You also want to import the North Sea data's existing SnapMirror relationship into the connection between the backup node and the mirror node.

After you import external relationships, the N series Management Console data protection capability takes over the management of data protection schedules and policies, and it disables the schedules and policies that were previously managed by other applications.

Steps

1. From the menu bar, click **Data** > **External Relationships**.

The External Relationships window lists relationships for data protected by SnapMirror or SnapVault but not yet managed with a dataset.

2. Select the SnapMirror and SnapVault relationships for the North Sea seismic test data; then click Import.

The Import Relationships wizard starts.

3. Complete the steps in the wizard to associate the protection relationships of the North Sea seismic test data with the existing North Sea Seismic Test Data dataset.

The N series Management Console data protection capability imports the relationships into the North Sea Seismic Test Data dataset. The N series Management Console data protection capability begins to manage the existing protection relationships as defined in the **Test Data**: Back up, then Mirror policy applied to the North Sea Seismic Test Data dataset.

After you finish

After successfully importing your existing SnapVault relationships, you should disable the SnapVault schedules on the storage systems from which the relationships were imported.

Verify the protection of the dataset

To verify that the protection defined in the policy is functioning, you need to monitor the jobs that create the protection relationships and the jobs that back up and mirror-copy the seismic test data. You also need to check the status of the dataset

Steps

1. From the menu bar, click **Data > Jobs**.

The Jobs window is displayed.

2. Click the filter button in the Dataset column and enter .*Seismic in the entry field.

The list displays information only for datasets that include the string "Seismic" in their names, such as Java Seismic Test Data and North Sea Seismic Test Data.

- 3. Review jobs for the two datasets as they run, noting whether any show a result other than In **Progress** or **Succeeded**.
- **4.** From the menu bar, click **Data > Datasets > Overview**.

The Overview tab of the Datasets window is displayed.

5. Select Java Seismic Test Data from the list of datasets.

The protection topology for **Java Seismic Test Data** is displayed in the Policy Diagram area and the properties of the dataset components are displayed in the properties area.

6. Review the protection, conformance, and resource status information for Java Seismic Test Data.

The dataset status is Protected and Conformant and the status of its resources is Normal.

7. Repeat Step 5 and Step 6 for the North Sea Seismic Test Data dataset.

Result

You have successfully implemented protection for the seismic test data.

Configure alarms

You want to configure alarms for the "Datasets:Test Data" group. One of the assumptions of this example is that you had already created a Resource Pools group and configured alarms for that group. Because the resource pools London Backup and Minneapolis Mirror are now members of that existing group, you do not need to set up alarms for them.

About this task

Before creating the alarms, you need to gather the following information necessary to complete the Add Alarm wizard for each alarm:

- The group to which you want to apply the alarm
 You are configuring alarms for the Datasets: Test Data group.
- The event name, event class, or severity type that you want to trigger the alarm For example, one of the alarms you plan to configure for the Datasets: Test Data group is triggered by the event **Dataset Protection Lag Error**.
- Who or what you want the event notification sent to
- The time period during which the alarm is active
- Whether you want the event notification repeated until the event is acknowledged and how often the notification should be repeated

Steps

1. From the menu bar, click **Notifications > Alarms**.

The Alarms window is displayed.

2. Click Add.

The Add Alarm wizard starts.

Complete the steps in the wizard to create the alarm trigged by the event Dataset Protection Lag Error.

After you finish

Repeat this procedure as needed for each alarm you want to configure for the Datasets:Test Data group.

NAS resource provisioning and data protection example workflow

This is a step-by-step example of how you might configure your system to provision storage resources and protect user data.

For descriptions of some of the concepts and terminology associated with the N series Management Console data protection and provisioning capabilities, see *Introduction to provisioning and protection* on page 11.

For administrative tasks and additional reference and conceptual information associated with provisioning and protection, see the N series Management Console Help.

This example is based on the same setup and configuration information that is used in the *Protection Example Workflow* on page 59. To complete this combined workflow example, there are additional provisioning tasks you need to perform before implementing the protection tasks.

The following list describes the provisioning tasks for this example workflow. After completing the provisioning tasks, you must perform the tasks identified in the section *Completing the provisioning and protection example workflow* on page 95.

Steps

- 1. Plan to implement NAS provisioning and protection on page 85
- **2.** Configure the hosts on page 90
- 3. Create the resource pools on page 92
- 4. Create provisioning policies on page 93
- **5.** Completing the provisioning and protection example workflow on page 95

Plan to implement NAS provisioning and protection

When you plan to implement the NAS provisioning and protection, consider the specific provisioning and protection requirements, the provision and protection strategies to follow, and the initial configuration upon which you are adding provisioning and protection.

NAS provisioning and protection example setup

For this example workflow, assume you are a storage architect for an energy company that needs to protect its seismic test data. The files of seismic test data are on storage systems on oil platforms in the North Sea and off the coast of Java.

The seismic test data files at the North Sea data center are currently protected by SnapVault and SnapMirror but are not yet managed with a dataset. The seismic test data files at the Java data center are not yet protected.

Develop a NAS provisioning strategy

Before configuring the space and provisioning requirements for your systems, you must work out a strategy for how you will group the resources and how the application should respond in out-of-space conditions.

For descriptions of the basic concepts and terminology associated with the N series Management Console provisioning capability, see *Introduction to provisioning and protection* on page 11.

Your provisioning strategy addresses a variety of considerations:

Storage type and protocol considerations

- What type of storage, NAS or SAN, do you want to provision with this policy?
- How will the customer's application access data?
 Since the storage type for this example is NAS, determine the access or export protocols that you need to configure: NFS, CIFS, or multiprotocol.

Availability considerations

What level of availability protection does the dataset require?

This is determined based on how critical the data is that you are protecting. The choices are:

- RAID-DP (Double disk failure)
 - Protects against the simultaneous failure of two disks.
- RAID4 (Single-disk failure)
 - Protects against the failure of a single disk.
- Storage subsystem failure (Aggregate SyncMirror)
 - Protects against the failure of disk shelves, adapters, and cables.
- Storage controller failure (HA pair)
 - Protects against the failure of a storage system within a cluster.

Space management considerations

- Do you want to use the policy to provision storage for a secondary node (backup or mirror copy destination)?
- Do users or groups need to have quota limits set for storage usage?
- How do you want space allocated for user data and Snapshot copies on the primary node?
- What actions should occur when a dataset needs more space?
- Will you guarantee all storage space for data and Snapshot copies or will you use aggregate overcommitment to thinly provision your storage?

Other Considerations

Will you use a custom provisioning script to perform tasks after storage is provisioned?

Develop a protection strategy

Before implementing a data protection plan, you must work out a strategy for protecting the seismic test data.

For descriptions of the basic concepts and terminology associated with the N series Management Console data protection capability, see *Introduction to provisioning and protection* on page 11 if possible.

Your strategy for protecting the data addresses a variety of considerations.

Schedule considerations

To meet the restore requirements of the data, you determine that the data should be backed up to the data center at the company headquarters in London and mirrored to the company's Minneapolis data center.

- How long do you need to retain backups of the data to meet its restore requirements?
- What are the preferred times of day to perform remote backups and mirror copies, based on network and resource loads?
- How often does data on a primary node need to be copied to a destination node to ensure that data on the destination node is never older than the maximum age mandated by your protection requirements?

Bandwidth considerations

What is the volume of data to back up and the available bandwidth to transfer copies of the data to a destination system?

Host considerations

Which hosts in London and Minneapolis have similar performance and Quality of Service levels?

Notification considerations

Which events require alarms and who needs to be contacted for them?

RBAC considerations

Your administrator account already has the roles and capabilities assigned to it that you need to perform all the tasks necessary to implement the data protection strategy. See Administrator roles and *capabilities* on page 147 for a list of RBAC roles required for protection tasks.

NAS provisioning and protection example assumptions

The descriptions and procedures in the provisioning and protection workflow are based on a set of assumptions about licenses, host systems, provisioning policies, resource pools, and other elements of your system configuration.

- *General assumptions* on page 88
- *Licenses enabled* on page 88
- *Host properties* on page 88
- Provisioning policy properties on page 89
- Resource pool properties on page 89
- *Dataset properties* on page 89

General assumptions

For this workflow, assume the following:

- You are configuring a storage environment of NAS over CIFS and NFS protocols.
- All hardware you intend to use has been configured with appropriate licenses, protocols, settings, and so forth.
- For any property not specified in this example, use the default value.

Licenses enabled

For this workflow, you would need the following licenses enabled:

- DataFabric Manager
- Data ONTAP licenses:
 - SnapVault on the primary storage system
 - SnapVault on the secondary storage system
 - SnapMirror on the tertiary storage system
 - Open Systems SnapVault
 - MultiStore license, enabled on each host containing vFiler units

Host properties

For this workflow, assume use of the following properties for your hosts:

- Host configuration
 - Primary data is stored on existing vFilers.
 - Backups and mirror copies will be stored on vFilers that you create for this use.
 - Open Systems SnapVault agent is configured on the hosts.

Provisioning policy properties

For this workflow, assume use of the following properties for the provisioning policies:

- General properties
 - Name: Use **provpol-nas** for the policy for primary data and **provpol-secondary** for the policy for the backups and mirror copy.
 - Description: Any meaningful description, such as NAS policy using CIFS & NFS protocols
 - Storage type: Use **NAS**
- Availability properties, Disk failure protection: Double disks (RAID-DP)
- NAS container properties, Quota settings: Use defaults of "0" (zero)

Resource pool properties

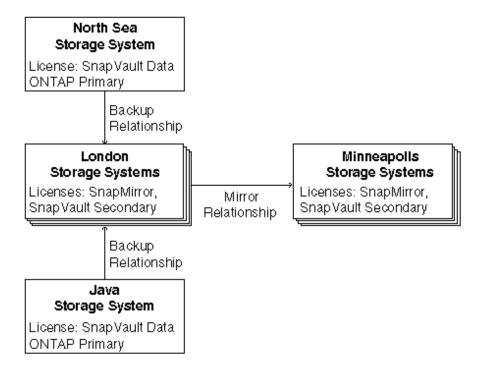
For this workflow, assume use of the following properties for the resource pools:

- Details (general properties)
 - Name: Use **London Backup** and **Minneapolis Mirror**
 - Description: Any meaningful description
- Allocate physical resources

Select the resources to be included in the resource pool. These resources must meet the licensing and configuration requirements of your provisioning and protection plan. vFiler units are already created on the hosts to be used for the backups and mirror copy.

Dataset properties

For this workflow, assume use of the following properties for the datasets:


- Name and description (general properties) One dataset will be named North Sea Seismic Test Data and the other will be named Java Seismic Test Data.
- Group: Both datasets are contained in a new **Datasets:Test Data** group, which is created under an existing **Data Protection** parent group.
- Resources: Select the default, Use a provisioning policy
- Provisioning
 - Provisioning policy: Select provpol-nas
 - Turn on NFS and CIFS and use the default settings
 - Select the resource pool to associate with the dataset
- vFiler unit: Select the vFiler unit that you created to assign to the dataset.
- Resource selection: Allow the system to automatically select a resource from the assigned resource pools.

Configure the hosts

Your next step is to configure the hosts for use in your protection and provisioning plan. This includes setting the login and NDMP credentials for the hosts and ensuring that the appropriate licenses are enabled on each host according to the purpose you assign to the host in your protection and provisioning strategies.

About this task

Because you plan to back up the North Sea and Java seismic test data to the London data center and mirror the backup to the Minneapolis data center, enable Data ONTAP licenses as follows:

North Sea storage system

This storage system stores the North Sea seismic test data in need of protection, so enable the SnapVault Data ONTAP Primary license on this

system.

Java storage system

This storage system stores the Java seismic test data in need of protection, so enable the SnapVault Data ONTAP Primary license on this system.

London storage systems

These storage systems will store backups for the seismic data, so enable the SnapVault Data ONTAP Secondary license on these storage systems. Also

enable the Data ONTAP SnapMirror license on these systems, because the		
backups they store will be mirrored to Minneapolis.		

Minneapolis storage systems

These storage systems will store mirror copies of the London storage systems, so enable the SnapMirror license on these storage systems. The Minneapolis storage systems also require the SnapVault Data ONTAP Secondary license so that you can restore data from these storage systems if the London storage systems are unavailable.

All storage systems

Ensure that the appropriate CIFS or NFS licenses are installed and configured on each host that you plan to use.

Ensure that the MultiStore license is enabled on each host that you plan to use.

Before beginning this procedure, you need to gather the necessary Data ONTAP license codes.

The naming convention for storage systems at the energy company indicates the geographical location.

You need to verify the following information for each host that you are using:

- The System Status and NDMP Status are UP and the Login Credentials and NDMP Credentials are Good.
- The appropriate Data ONTAP licenses are installed.
- The appropriate CIFS or NFS networking licenses are installed.
- The hosts or aggregates that you intend to use are not already part of another resource pool (resources can only belong to one resource pool).

Steps

- 1. From the menu bar, click **Hosts** > **Storage Systems**.
- 2. Scan the credentials in the list of hosts.

For the instructional purposes of this example, you find that credentials are set and valid for most of the hosts, but one host you plan to use has bad credentials you need to update.

- 3. From the list of hosts, select the name of the host with bad credentials.
- 4. Click Edit

The properties sheet for the selected host appears. The current credential information for the host is displayed.

5. Update the Login Credentials and NDMP Credentials fields with valid user names and passwords; then click Apply.

The database is updated with the credentials for the selected host. Verify that the credentials are now good.

- **6.** Click the **Details** tab at the bottom of the window.
- 7. For each host that you plan to use, select the host from the list and verify the following:

- The necessary SnapMirror and SnapVault licenses are enabled.
- The CIFS or NFS networking protocols are configured, as appropriate.

Notice that one of the London hosts you plan to use, london14-geo, is configured with the SnapMirror license but not the SnapVault secondary license.

8. Select **london14-geo** from the list of hosts.

The licensing status for london14-geo is displayed in the Licenses area.

9. Click Edit; then click Licenses.

The Licenses tab of the properties sheet for the selected host appears.

10. Type the SnapVault secondary license code in the New License field; then click Add.

The SnapVault secondary license is configured on london14-geo. Note that it is not necessary to indicate which service the code enables; the code is matched automatically to the appropriate service license

11. Click the Usage tab at the bottom of the Storage Systems Hosts window.

The bottom area of the window changes to display a tree view of the contents of the selected host and any resource pool or datasets that are associated with the host.

12. For each host that you plan to use, select the host in the tree view and verify that neither the host nor any of its aggregates are already associated with a resource pool.

If a storage system or an aggregate is part of a resource pool, the name of the resource pool is displayed. You must individually select each aggregate to in the host to see its dataset or resource pool associations.

After you finish

Now that you have configured the hosts with login and NDMP credentials and verified the licenses, the next step is to organize the hosts into resource pools that the N series Management Console provisioning capability uses to provision storage for the primary node and for backups and mirror copies.

Create the resource pools

Organize the North Sea hosts and the Java hosts into separate resource pools for primary node provisioning. Organize the London hosts enabled with the SnapVault Secondary license into a resource pool for the backups and the Minneapolis hosts enabled with the SnapMirror license into a resource pool for the mirror copies. The N series Management Console provisioning capability provisions storage out of these resource pools, as needed.

Before you begin

Ideally, hosts in a resource pool are interchangeable in terms of their acceptability as destinations for backups or mirror copies. When developing the protection strategy for the seismic test data, you

identified London and Minneapolis hosts with similar performance and quality of service levels that would be suitable members of the same resource pool.

Where needed, you created aggregates of unused space on hosts you intend to assign to resource pools to ensure that there is adequate space to contain the mirror copies and backups.

Before creating each resource pool, you should have available the information necessary to complete the New Resource Pool wizard:

- The name of each resource pool to be created The names you plan to use can indicate the location and purpose (storing backups or mirror copies) of each resource pool. For example, you use the name London Backup for the resource pool of hosts used to store backups in London.
- The time zone the policy schedules should assume when timing protection events For example, setting the time zone of the London Backup resource pool to Europe/London specifies that scheduled mirror operations originating from London are to be interpreted in the London time zone.
- Which physical resources to associate with the resource pool
- The Resource Label, used for filtering resources during provisioning
- The Space Thresholds for setting alerts for out-of-space conditions

Steps

- 1. From the menu bar, click **Data** > **Resource Pools** > **Resources**.
- 2. Click Add to open the Add Resource Pool wizard, and then complete the wizard.
- 3. Verify the creation and content of the resource pool by viewing the results that are displayed in the **Resource Pools** window

Result

After you complete the wizard to create the London Backup resource pool, start the wizard again to create three more resource pools: the Minneapolis resource pool for mirror copies, named Minneapolis Mirror; the Java resource pool for primary data, named Java Primary; and the North Sea resource pool for primary data, named North Sea Primary.

After you finish

You will next create provisioning policies.

Create provisioning policies

A provisioning policy describes the properties of storage, such as availability level, space allocation values, and so forth. You assign a provisioning policy to a dataset based on the set of storage properties that the dataset requires. For this example, you need to create two provisioning policies to apply to datasets. One to be assigned to the primary nodes and one to be assigned to the secondary backup and mirror nodes.

Before you begin

Before creating a provisioning policy, you need to gather the information necessary to complete the Add Provisioning Policy wizard.

- The name of the new policy
 You plan to use the name provpol-nas for the primary node NAS policy and provpol-secondary
 for the policy for the backup and mirror nodes.
- The type of storage you want to provision with this policy
 You will select the NAS option for the primary node policy and the Secondary option for the backup and mirror node policy.

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

Steps

- 1. From the menu bar, click **Policies > Provisioning**.
- 2. Click Add to start the Add Provisioning Policy wizard.
- **3.** On the General Properties page, enter the name and description, and select **NAS** as the storage type.
- **4.** Complete each remaining property page in the wizard.
- 5. Confirm the details of the policy and click **Finish**.
- **6.** Click **Add** to start the **Add Provisioning Policy** wizard again.
- 7. On the General Properties page, enter the name and description, and select **Secondary** as the storage type.
- **8.** Complete the wizard and click **Finish**.

Result

Your new policies are listed in the Provisioning Policies window.

Completing the provisioning and protection example workflow

You have completed the tasks that are specific to the provisioning part of the example. The remaining tasks are exactly the same as those used in the protection workflow.

After completing the task Create provisioning policies, go to the Protection Example Workflow on page 59 and complete the following tasks:

- Evaluate and modify the protection schedules on page 68
- Create the protection policy and modify the settings on page 71
- *Create groups* on page 78
- *Create datasets* on page 80
- Assign the protection policy to the datasets on page 81
- *Import discovered relationships* on page 82
- *Verify the protection of the dataset* on page 83
- *Configure alarms* on page 84

Disaster recovery example workflow

This is a step-by-step example of how you might configure your system to protect your user data and recover from a system failure.

For descriptions of some of the concepts and terminology associated with the N series Management Console data protection capability, see *Introduction to provisioning and protection* on page 11 if possible.

For administrative tasks and additional reference and conceptual information associated with the N series Management Console data protection capability, see the N series Management Console Help.

Steps

- 1. Plan to implement disaster recovery capability on page 96
- 2. Configure the hosts for disaster recovery protection on page 99
- 3. Create the resource pools on page 100
- 4. Create a failover script on page 101
- 5. Create the disaster recovery protection policy on page 104
- **6.** Create the disaster recovery-capable dataset on page 106
- 7. Assign the disaster recovery protection policy to the datasets on page 107
- **8.** Verify the disaster recovery protection of the dataset on page 108
- **9.** Test the failover script on page 109
- **10.** Perform an unscheduled update on page 110
- 11. Fail over to the disaster recovery node on page 110
- **12.** Prepare for recovery after a disaster on page 111
- **13.** Manual failback using the command-line interface on page 112

Plan to implement disaster recovery capability

When you plan to implement disaster recovery capable protection, consider the specific requirements of your disaster recovery protection, the disaster recovery strategy that you want to implement, and the initial configuration that you want to make disaster recovery capable.

Disaster recovery protection example setup

For this example, assume you are a storage architect for a company with chain stores throughout the US. An active database that tracks chain store sales transactions is located in primary storage at

Company A's San Francisco transaction and data center. The database is updated hourly by store managers sending in sales information from their remote branch locations.

For supporting normal business tracking, Company A's San Francisco site needs to provide the active read/write-capable primary data storage for remote online users sending in transaction data.

For business continuance purposes, Company A's San Jose site needs to be capable of taking over as the active primary storage site and provide continued reporting ability to remote store managers if the original primary storage site in San Francisco is destroyed or made unavailable.

For intermediate-term archival storage and data protection, the mirrored data from these transactions also needs to be backed up to a tertiary storage site in Sacramento.

Develop a disaster recovery strategy

As Company A's storage architect, you must plan the deployment and configuration of your storage resources to ensure continued availability of primary storage data to remote users even when the primary data storage containers are destroyed or become unavailable.

Issues to consider

Do you have applicable licenses installed? Which policy is best to use? How do you plan to provision storage on the nodes? These are questions you should consider before creating a dataset that is capable of disaster recovery. Your plans should include the following considerations:

- If you created datasets with a previous version of the N series Management Console data protection capability, do you want to convert them into dataset that supports failover?
- What type of policy do you need? An easy way to review the policies that are capable of disaster recovery is to set the filter in the DR Capable column to Yes in the Protection Policies window
- Do you want to manually assign resources to the node? You need to check that the resources assigned to the primary and disaster recovery nodes are matched in size and installed applications.
- Do you want to provision storage for disaster recovery nodes using policy-based provisioning?

Disaster recovery deployment strategy

To support Company A's disaster recovery protection and archival requirements, you decide to deploy your storage system and storage management components in the following locations:

Primary data storage site Storage systems in the San Francisco site must be set up to hold the in San Francisco primary transaction data accessed and updated by online users. Storage systems in the San Jose site must be set up to hold hourly Secondary storage and disaster recovery node site copies of the transaction data mirrored from the San Francisco site in San Jose and must be enabled to function as primary storage if the San Francisco site becomes unavailable.

Tertiary or backup Storage systems in the Sacramento must be set up to hold hourly

storage site in Sacramento copies of the transaction data backed up from the mirrored data at the

San Jose site.

DataFabric Manager The DataFabric Manager server, sacto_dfm, is located at the

server Sacramento site.

Management Console The Management Console for managing disaster recovery protection

is located at the San Jose site.

Disaster recovery protection example assumptions

This section identifies the configurations, settings, and properties that are used in the disaster recovery protection example workflow.

General assumptions

• Storage environment: NAS over CIFS and NFS protocols

Licenses enabled

For this workflow, assume the following licenses are enabled:

• Data ONTAP SnapMirror license enabled on all primary, secondary, and tertiary storage systems.

Disaster recovery protection policy assumptions

For this example, assume the following properties when creating and assigning the disaster recovery capable protection policy.

- Policy name: Company A Transaction Data: Mirror, then Backup
- Primary data node

For this example, use the following default settings for the Primary node.

- Local Backup schedule: **Hourly on the half hour**When applied to the Primary data node, this schedule creates Hourly local backups each hour.
- Lag

Warning Threshold: **2.0 hours** Error Threshold: **3.0 hours**

- Backup Script: none
- Failover Script: https:\\sacto_dfm.company_a.com\\transactions\failoverscripts \fo_script.sh
- Connection between the Primary data node and the DR Mirror node
 For this example, use the following settings for the "Primary to DR Mirror" connection.
 - Mirror copy schedule: Hourly on half hour
 You will need to select this existing schedule to replace the default.

• Throttle schedule: **none**

• Lag

Warning Threshold: 2.0 hours Error Threshold: 3.0 hours

- Disaster Recovery node (DR Mirror node in this case) For this example, you will use the default node name, DR Mirror.
- Connection between the Mirror node and the Backup node
 - Backup schedule: Hourly on half hour

You will need to select this existing schedule to replace the default.

- Throttle schedule: **none**
- Lag

Warning Threshold: 2.0 hours Error Threshold: 3.0 hours

Backup node

For this example, use the following Backup node Retention settings:

Hourly: 9 days

Dataset assumptions

For this example, assume the following properties when creating and protecting the datasets.

- Name: the dataset will be named **company a transactions**.
- · Group: Global.
- Protection policy: Company A Transaction Data: Mirror, then backup customized from the base policy, **DR Mirror**, then back up.
- Resources: Use a provisioning policy.
- Provisioning policy: Use the default provisioning policy.
- Resource pools: Assign San Jose Mirror to the disaster recovery node site and Sacramento **Backup** to the Sacramento tertiary data site.

Configure the hosts for disaster recovery protection

Your next step is to configure the hosts for use in your disaster recovery protection plan. This includes setting the login and NDMP credentials for the hosts and ensuring that the appropriate licenses are enabled on each host according to the purpose you assign to the host in your disaster recovery protection strategy.

About this task

Because you plan to mirror the hourly remote user transaction data from the San Francisco site to San Jose and back up the San Jose site to the Sacramento site, enable Data ONTAP licenses as follows:

These storage systems store and allow user read/write access to the San Francisco transaction data, which you want to mirror to storage systems in San Jose, so enable the SnapMirror Data ONTAP license on this system.

San Jose storage systems (in the disaster recovery site) These storage systems mirror on an hourly basis the data that is being read and written to at the San Francisco site, so enable the SnapMirror license on these systems. The SnapMirror license also enables backup of the mirrored data at the San Jose site to tertiary storage in Sacramento.

Sacramento storage systems (in the backup tertiary storage site) These storage systems back up and provide long-term storage on transaction data that was input in San Francisco and mirrored to San Jose. San Jose storage systems are licensed for SnapMirror, so enable the SnapMirror license on the Sacramento storage systems also.

Before beginning this procedure, you need to gather the necessary Data ONTAP license codes.

The naming convention for the storage systems indicates their geographical location and their storage function.

Steps

- 1. From the menu bar, click **Hosts** > **Storage Systems**.
- 2. Scan the list of hosts and verify the following for each host you intend to use:
 - System Status is Online.
 - Login Credentials are Good.
 - NDMP Status is Up.
 - NDMP Credentials are Good.
 - SnapMirror is licensed.

After you finish

Now that you have verified the proper configuration of each host you intend to use, the next step is to organize the hosts into resource pools that you use to provision storage for backups and mirror copies.

Create the resource pools

Organize the San Jose hosts enabled with the SnapMirror license into a resource pool for the disaster recovery node mirror copies and the Sacramento hosts enabled with the SnapMirror license into a resource pool for the tertiary backup. the N series Management Console data protection capability can provision storage out of these resource pools, as needed.

Before you begin

Ideally, hosts in a resource pool are interchangeable in terms of their acceptability as destinations for mirror copies or backups. When developing the disaster recovery protection strategy for the remote

user transaction data, you identified San Francisco and San Jose hosts with similar performance and capacities that would be suitable members of the same resource pool.

Where needed, you created aggregates of unused space on hosts you intend to assign to resource pools to ensure that there is adequate space to contain the mirror copies and backups.

Before creating the resource pool, you need to gather the information necessary to complete the Add Resource Pool wizard:

- The name of each resource pool to be created The names you plan to use indicate the location and purpose (storing backups or mirror copies) of each resource pool. For example, you use the name San Jose Mirror for the resource pool of hosts used to store mirror copies in San Jose.
- (Optional) A description of the resource pool
- (Optional) The name and email address of the resource pool owner
- The time zone the policy schedules should assume when timing protection events (in this case, the same for all three sites)

Steps

1. From the menu bar, click **Data** > **Resource Pools**.

The Resource Pools window appears.

2. Click Add

The Add Resource Pool wizard starts.

3. Complete the steps in the wizard to create the San Jose Mirror resource pool.

Use the following settings:

- Name: Use San Jose Mirror.
- Space threshold defaults:
 - Space thresholds: enabled
 - Nearly Full threshold (for resource pool): 80%
 - Full threshold (for resource pool): 90%

After you finish

After you complete the wizard to create the San Jose Mirror resource pool, start the wizard again to create the Sacramento Backup resource pool for backups.

Create a failover script

In most cases an administrator supplies a failover script that specifies tasks that need to be completed at two points during failover: just before the mirror relationship between the San Francisco and San

Jose storage is broken, and after the mirror relationship has been broken and the export protocols have been applied to the now active data in San Jose.

Before you begin

You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance.

About this task

In this example, the failover script stops the program enabling new data writes to the San Francisco primary storage just before the mirror relationship break and starts that program at the San Jose disaster recovery node site just after the mirror relationship break.

Steps

1. Author a failover script by using the passed variables and structure needed to achieve your disaster recovery goals.

For this example, the failover script you use stops and restarts applications that are writing data to the active primary storage data before and after the mirror relationship break.

2. Copy the failover script to the DataFabric Manager server or some other network location.

Note: You should avoid locating the failover script at the primary storage site.

For this example, the location of the DataFabric Manager server and the failover script is the Sacramento tertiary storage backup site. The failover script URL is https://sacto_dfm.company_a.com/\transactions\failoverscripts\fo_script.sh.

Example of a failover script

Passed variables

A failover script can include the following variables, which are passed to it from the N series Management Console data protection and provisioning capabilities.

Variable	Description
DP_CONNECTION_ID	A tracking ID generated by the N series Management Console data protection and provisioning capabilities.
DP_DATASET_ID	A tracking ID generated by the N series Management Console data protection and provisioning capabilities.
DP_DATASET_NAME	The name of the dataset to which this script is to be applied.
DP_FAILOVER_SCRIPT_TE ST	Whether or not this failover script is being invoked as a test. Starting a test failover by clicking test failover on the Disaster Recovery tab sets this value to 1.

Variable	Description
DP_FAILOVER_STATUS	Whether the failover process is currently in the stage before or stage after the failover mirror relationship is broken. Values are either of the following:
	DP_BEFORE_FAILOVER_MIRROR_BREAKDP_AFTER_FAILOVER_MIRROR_BREAK
DP_JOB_ID	A tracking ID generated by the N series Management Console data protection and provisioning capabilities.
DP_POLICY_ID	A tracking ID generated by the N series Management Console data protection and provisioning capabilities.
DP_POLICY_NAME	The name of the disaster protection policy that is calling this failover script.
DP_SERIAL_NUMBER	The serial number of the DataFabric Manager server software.

Example failover script

The following simple example script carries out the following functions:

- Checks to see if the failover is a test failover or an actual failover.
- Sends feedback to be displayed in the Job Summary field of the Jobs window.
- Stops a data-producing application prior to the failover-induced mirror relationship break.
- Restarts a data-producing application after the failover-induced mirror relationship break and after data on the secondary has been exported.

```
#!/bin/sh
if [ "$DP_FAILOVER_SCRIPT_TEST" = "1" ]
t.hen
   echo This is a TEST failover.
else
   echo This is an ACTUAL failover.
  echo Script called with DP_FAILOVER_STATUS=$DP_FAILOVER_STATUS
# Perform different operations based on failover status
case "$DP_FAILOVER_STATUS" in
DP_BEFORE FAILOVER MIRROR_BREAK)
   echo "Perform script operations before mirror break."
   # stop mySQL server
   rsh -l user_a r_host1 /etc/rc.d/init.d/mysqld stop
DP_AFTER_FAILOVER_MIRROR_BREAK)
   echo "Perform script operations after mirror break."
   # start mySQL server
  rsh -l user_a r_host1 /etc/rc.d/init.d/mysqld start
   ;;
  echo "Unknown DP_FAILOVER_STATUS: $DP_FAILOVER_STATUS"
```

```
exit 1
esac
# Return 0 for success.
# Return 1-255 for failure.
```

Note: The Jobs window can display up to 2 KB of failover script output for the Mirror Break Script End event. Output exceeding 2 KB is truncated and not recoverable.

Create the disaster recovery protection policy

You now create a disaster recovery capable protection policy.

Steps

- 1. From the menu bar, click **Policies > Protection > Overview**. The Overview tab on the Protection Policies window is displayed.
- 2. Click Add Policy to start the Add Protection Policy wizard.
- 3. Type a policy name, Company A Transaction Data: Mirror, then Backup and description; then click Next.
- 4. Select a base policy and click Next.

In this example you select **DR Mirror**, then backup as the base policy.

- 5. Complete the policy property sheets for the primary node and any mirror connection, backup connection, secondary storage, or tertiary storage node that the Add Protection Policy wizard displays for you. Use the following values:
 - Primary data node

For this example, use this policy's default name for Node name: Primary data

the primary data node. The primary data node contains the storage systems at Company A's San

Francisco site.

Local Backup Schedule: Hourly on

the hour

For this example, hourly local backup of the

primary data is sufficient frequency.

1 Day

Backup Retention Duration: Hourly: In this example, the only important retention time is the one-day retention duration you assign to

Hourly backups.

Lag Warning Threshold: 1.5 hours With Hourly backups, a lag warning threshold of

1.5 hours means that a warning would be issued

after one local backup failure.

A lag error threshold of 2.0 hours means that an Lag Error Threshold: 2.0 hours

error would be issued after two successive local

backup failures.

Failover script: https:\

\sacto dfm.company a.com \ \transactions\failoverscripts

\fo script.sh

A failover script is commonly stored on the DataFabric Manager server or any place that the server can easily access it.

Note: You should avoid locating the failover

script in a primary node container.

Run as: blank In this example, the policy's Run as parameter,

which can be used to specify another UNIX user under whom to run this script, is left blank.

Primary data to DR Mirror connection

For the current purposes, the Hourly on half hour schedule Mirror schedule:

provides mirror jobs at the required frequency. Hourly on half hour

Throttle schedule: None Your protection strategy does not require use of a throttle

schedule.

You want to receive a warning message after two successive Lag warning threshold:

mirror transfer failures, so you need a lag warning threshold of

2.0 hours.

hours

2.0 hours

Lag error threshold: 3.0 You want to receive an error message after three successive mirror transfer failures, so you need a lag error threshold of 3.0

hours.

DR Mirror data node

Node name: DR For this example, use this policy's default name for the secondary storage Mirror disaster recovery node. The DR Mirror node contains the storage systems

at company A's San Jose site.

• DR Mirror to Backup connection

Mirror schedule: The 30-minute difference with the Hourly on half-hour schedule Hourly on the hour

assigned to the Primary to Mirror connection will give the mirror operation ample time to be completed before the backup operation

begins.

Throttle schedule: Your protection strategy does not require use of a throttle schedule.

None

Lag warning You want to receive a warning message after two successive mirror transfer failures, so you need a lag warning threshold of 2.0 hours. threshold: 2.0 hours

Lag error threshold: You want to receive an error message after three successive mirror transfer failures, so you need a lag error threshold of 3.0 hours.

· Backup node

Node Name: Backup For this example, use this policy's default name for the tertiary

storage backup node. The Backup node contains the storage

systems at Company A's Sacramento site.

Backup Retention
Durations Hourly
backups: 9 Days

In this example, you will retain Hourly backups in tertiary storage

for 9 days.

After all property sheets are completed, the Add Protection Policy wizard displays a summary sheet for the policy that you will create.

6. Click **Finish** to save your changes.

After you finish

You next create the dataset to which you can assign the disaster recovery protection policy that you just created.

Create the disaster recovery-capable dataset

You need to put the Company A transaction data in a dataset.

Before you begin

Before creating a new dataset, you need to gather the necessary information to complete the Add Dataset wizard:

- The name of the new dataset
- (Optional) A description of the dataset
- The name and contact information for the owner of the dataset
- The time zone the policy schedule should assume when timing protection events
- The group to which you want to add the dataset
- Whether you want to manually select individual physical resources to provision the primary node, or whether you want to select resource pools to provision the primary node

Note: In this example you will provision the primary node by assigning of physical storage elements at the San Francisco site.

• The names of the individual physical resources that you want to assign to the primary node in the company a transactions dataset.

About this task

You will assign the Company A transaction data to the dataset as part of the dataset creation process.

Steps

1. From the menu bar, click Data > Datasets > Overview.

The Overview tab of the Datasets window is displayed.

2. Click Add.

The Add Dataset wizard starts.

3. Complete the steps in the wizard to create the **company a transactions** dataset.

The new **company** a **transactions** dataset appears in the list of datasets.

After you finish

You next attach the disaster recovery protection policy to the dataset.

Assign the disaster recovery protection policy to the datasets

After you create the dataset, you need to attach the disaster recovery protection policy to it. The disaster recovery protection policy establishes the settings for how mirror, backup, and, if necessary, failover operations should be performed.

Before you begin

Before attaching the disaster recovery protection policy, you gather the information necessary to complete the Dataset Policy Change wizard:

- The protection plan (backup, mirror, and so on) for this dataset In this example, you will select the Company A Transaction Data: Mirror, then Back up protection policy that you created.
- Whether you want to manually select individual physical resources to provision the nonprimary nodes, or whether you want to select resource pools to provision the nonprimary nodes

Note: In this example you will provision by resource pool.

- Assign the San Jose Mirror resource pool to the dataset's Mirror node.
- Assign the Sacramento Backup resource pool to the dataset's Backup node.

Steps

1. From the menu bar, click the **Overview** tab on the **Datasets** window.

- 2. Select the company a transactions dataset from the list of datasets.
- 3. Click Protection Policy to start the Dataset Policy Change wizard.

Note: To assign a resource pool to your nonprimary nodes, click **Provision and attach resources using a policy** when it is displayed; then select the **default** option.

4. Complete the wizard and click **Finish**.

Result

The company_a_transactions dataset now has a protection policy associated with it.

After you finish

Verify that the protection policies are now displayed in the Protection Policy column for the company_a_transactions dataset.

Verify the disaster recovery protection of the dataset

To verify that the protection defined in the policy is functioning, you need to monitor the jobs that create the protection relationships and the jobs that back up and mirror the transaction data. You also need to check the status of the dataset.

Steps

1. From the menu bar, click **Data > Jobs**.

The Jobs window is displayed.

2. Click the filter button in the Dataset column and enter company_a* in the entry field.

The list displays information only for datasets that include the string "company_a" in their names, which in this example, will be **company a transactions**.

- 3. Review protection jobs for the dataset as they run, noting whether any show a result other than In **Progress** or **Succeeded**.
- **4.** From the menu bar, click **Data > Datasets > Overview**.

The Overview tab of the Datasets window is displayed.

5. Select company a transactions from the list of datasets.

The protection topology for **company_a_transactions** is displayed in the Policy Diagram area and the properties of the dataset components are displayed in the properties area.

6. Review the protection, conformance, and resource status information for **company a transactions**.

The dataset status is Protected and Conformant and the status of its resources is Normal.

Result

You have successfully implemented disaster recovery protection for the Company A data.

Test the failover script

After you have verified the success of the disaster recovery protection configuration, you can test the operation of your optional user-generated failover script to ensure that it operates as designed. You can test the failover script without conducting an actual failover.

Before you begin

- You must be authorized to perform all the steps of this task; your RBAC administrator can confirm your authorization in advance, start and stop applications on the storage systems of the dataset being tested.
- Ensure that the failover script flags are set to prevent actual failover operations from proceeding.

Steps

1. From the menu bar, click Data > Datasets > Disaster Recovery.

The N series Management Console data protection capability lists all the datasets that have been assigned disaster recovery capable protection policies.

2. Select the dataset on which you want to test the failover script.

In this case, you select the **company a transactions** dataset.

3. Click Test.

The N series Management Console data protection capability begins testing the failover script that is stored on the associated DataFabric Manager server and specified in the disaster recovery capable protection policy assigned to the selected dataset.

Result

The failover test adds a job, whose progress you can monitor in the Jobs window. However, because the script is executed in test mode, an actual failover with mirror relationship breaks, is not executed.

After you finish

If your primary data center in San Francisco is never threatened with destruction, disablement, or unavailability; then testing of the failover script might be the last task to complete for implementing disaster recovery protection. However, if emergency forces you to invoke failover from the San Francisco to San Jose site, then further tasks must be completed.

Perform an unscheduled update

If you have advance warning of an impending event that might necessitate a failover and want to update the disaster recovery site with primary site data that has changed since the last scheduled mirror job, you can perform an unscheduled manual update before failover.

Steps

- 1. In the **Disaster Recovery** tab, select the dataset to confirm that it was using the storage system when it crashed, assess what was damaged, and look for indication that the dataset can fail over.
- 2. Click Update.

Result

The N series Management Console data protection capability updates the disaster recovery connection in the forward direction.

After you finish

After the update is complete, you can begin the failover process.

Fail over to the disaster recovery node

If an emergency situation destroys, disables, or makes otherwise unavailable the data in the primary node storage systems, you can start failover to make the mirrored data on the disaster recovery node accessible and writeable by primary storage users.

Before you begin

You might want to update the disaster recovery node before you begin this procedure.

About this task

In this example, assume that a severed communications cable close to Company A's San Francisco transaction and data center prevents remote users from accessing and updating the transaction data at Company A's primary storage site.

Steps

 From the Disaster Recovery tab, select the dataset or datasets on which you want to carry out failover.

In this example, select the company a transactions dataset.

2. Click Failover.

The Begin Failover dialog box displays and gives you an opportunity to update the disaster recovery node connection.

3. If you need to update the disaster recovery node connection, click Cancel to return to the Disaster Recovery tab and click Update.

4. Click Failover.

The Begin Failover dialog box displays.

5. Click Failover.

The N series Management Console data protection capability returns to the Disaster Recovery

6. View the failover job progress for the dataset in the Failover field.

Result

The N series Management Console data protection capability does the following:

- If a failover script is associated with the dataset's protection policy, the N series Management Console data protection capability executes tasks specified in the pre-mirror-relationship-break part of the script.
- Breaks all the disaster recovery mirror copies for the company_a_transactions dataset, which makes the secondary storage writable.
- Makes the secondary data in the disaster recovery node system in San Jose accessible to clients and applications by bringing LUNs online and exporting NAS storage.
- If a failover script is associated with the dataset's protection policy, the N series Management Console data protection capability executes tasks specified in the post-mirror-relationship-break part of the script.
- Graphically displays the primary node as offline and the primary-to-mirror relationship as broken for the company a transactions dataset.

Prepare for recovery after a disaster

If an emergency situation has forced you to carry out failover to the disaster recovery node systems, you need to take note of the recovery system before deciding which recovery strategy to follow.

Steps

1. From the dashboard, click the Arrow button on the Failover Readiness panel to access the Datasets window.

From this window, you can find detailed information about the resource that requires you to take action. If a volume is offline, the icon indicates whether it is unavailable.

In this example, assume all the volumes and qtrees in the Company A Transaction Data dataset were taken offline by a disrupted cable connection to the site.

2. In the **Disaster Recovery** tab, select the affected dataset to confirm that it was using the storage system when it crashed, assess what was damaged, and look for indication that the dataset can fail over.

Look for matching criteria:

- Physical resources—are they the same storage systems or have the same RAID protections?
- Backup copies--are they the same size?
- Normal status--are the volumes online?

Result

In best cases, you can fix the primary storage or recover lost data from backups, although you may want to failover manually to avoid downtime while fixing the problem. If backups are not available, or hardware and disks are destroyed, you would then fail over to the disaster recovery node.

In this example, assume that the original primary storage systems at the San Francisco site have remained intact. Within a day, the severed cable connections have been restored, and the remaining task is to restore the San Francisco site as the primary site using a failback process to resynchronize its data and then giving it back its primary storage function.

Manual failback using the command-line interface

Use the dfpm and dfdrm commands on the DataFabric Manager server to resynchronize data on restored volumes and qtrees.

Before you begin

Ensure that you are assigned an administrator role that enables you to restart storage systems on the primary and disaster recovery nodes.

Attention: You cannot perform failback on a failed-over dataset that is assigned the DR-Backup policy if that dataset contains SnapMirror relationships to non-qtrees.

About this task

In this example, the volume and qtree resources at the original San Francisco primary site remain intact after the communications cable disruption and failover occurs. The San Jose disaster recovery site continues to provide primary storage function and has received and recorded updated sales data from the various branch stores. Now cable communications to the San Francisco site have been restored, and your task is to complete the following actions.

- Update the San Francisco storage systems with the changes in the transaction data that have occurred and been recorded at the San Jose site after failover was completed.
- Give primary storage function back to the San Francisco data and transaction center.

Steps

- 1. Log in to the DataFabric Manager server, sacto dfm.
- 2. To list all the San Jose secondary storage elements (mirrored volumes and qtrees) in the company a transactions dataset, enter the command:

```
dfpm dataset list -R company_a_transactions
```

This command lists all the mirror relationships in the company a transactions dataset. The ones in the "broken off" state (this should be all mirror relationships) are the ones you want to restore.

Note: In this example assume that in the listed broken off mirror relationships, the San Francisco storage elements are: sf obj1, sf obj2, sf obj3, and sf obj4 and their associated San Jose storage elements are: dr obj1, dr obj2, dr obj3, and dr obj4.

3. To resynchronize data in the original primary volumes and qtrees in the San Francisco site with their updated secondary volumes and gtrees in the San Jose site, enter the command:

```
dfdrm mirror resync -r dr_obj1 dr_obj2 dr_obj3 dr_obj4
```

In this command the -r parameter temporarily reverses the original mirror relationships so that the original primaries in San Francisco are updated as mirror targets with the most recent data from San Jose.

Wait for the dfdrm mirror resync -r job to complete.

4. To confirm the successful completion of the resynchronization, note its job ID and enter the command:

```
dfdrm job list job_ID
```

5. To break the temporary reverse mirror relationship, enter the command:

```
dfdrm mirror break sf_obj1 sf_obj2 sf_obj3 sf_obj4
```

Note: Confirm that the dfdrm mirror break job is complete before starting the next step.

6. To confirm successful completion of the relationship break, note its job ID and enter the command:

```
dfdrm job list job_ID
```

7. To reestablish the mirror relationship in the forward direction, enter the command:

```
dfdrm mirror resync -r sf_obj1 sf_obj2 sf_obj3 sf_obj4
```

Wait for the dfdrm mirror resync -r job to complete.

8. To confirm successful completion of the resynchronization, note its job ID and enter the command:

```
dfdrm job list job_ID
```

9. To restore the dataset DR state to ready, enter the command:

```
dfpm dataset failover state company_a_transactions "ready"
```

114 | OnCommand Unified Manager Guide to Common Provisioning and Data Protection Workflows

Result

After the restoration of disaster recovery state ready to the company_a_transactions dataset, the N series Management Console data protection capability displays that dataset as it was displayed before failover was started.

Storage services configuration and attachment example workflow

This workflow describes the configuration of three grades of storage services offerings by a storage service provider and the assignment, by the provider, of one of those storage services to a new dataset, one of those storage services to an existing dataset, and one of those storage services to multiple new datasets.

Steps

- 1. Plan to implement storage services protection on page 115
- 2. Create the "Gold level" storage service on page 119
- 3. Create the "Silver level" storage service on page 120
- **4.** Create the "Bronze level" storage service on page 121
- 5. Create a dataset using the "Gold level" storage service on page 122
- **6.** Attach the "Silver level" storage service to an existing dataset on page 124
- 7. Create multiple datasets using the "Bronze level" storage service on page 125

Plan to implement storage services protection

When you plan to implement storage services protection, consider the classes of storage services that you want to support and the initial configuration on which you must implement storage services protection.

Example storage services offerings

In this example, cloud service storage service provider Company ABC wishes to provide its subscribers with three standardized, consistent levels of data storage services.

The levels of service that the storage service provider wants to offer include the following:

Gold level

Storage service with the highest performance, lowest latency, and highest availability.

This level service might be appropriate for storage of data from applications tracking point of sale commercial transactions. Requirements include the following:

- Application Requirement: > 20,000 IOPS, Latency: ~5 ms (average mixed workload)
- Availability: 99.999% (average < 5 mins / year unscheduled downtime)
- Primary-to-secondary storage mirror replication at 10 minute intervals with failover ability
- Secondary-to-tertiary storage backup replication with 30 day retention

- Controller-redundancy (CFO) protection implemented on the primary and secondary nodes
- Application capacity and performance fully provisioned (guaranteed, no thin provisioning)
- Primary and secondary storage provisioned by high performance storage systems and Gateways
- Tertiary storage provisioned by basic performance storage systems and Gateways
- Multi-tenancy support

Silver level High performance and high availability.

This level of storage service might be appropriate for development data. Requirements include the following:

- Application Requirement: > 1,000 IOPS and < 20,000 IOPS, Latency: < 10 ms
- Availability: 99.999% (average < 5 mins / year unscheduled downtime)
- Primary to secondary backup nightly at 24 hour intervals with 30 day retention on the secondary
- RAID-DP protection implemented on the primary data node
- Capacity partially provisioned at 50% oversubscription (thin provisioning, deduplication enabled, cloning enabled)
- Primary storage provisioned by high performance storage systems and Gateways
- Secondary storage provisioned by mid-range performance storage systems and Gateways
- Multi-tenancy support

Bronze_level Highest density and lowest cost storage, lower performance.

This level of service might be appropriate for email account data. Requirements include the following:

- Application Requirement : < 2,000 IOPS, Latency < 30 ms
- Availability: 99.995% (average < 25 mins / year unscheduled downtime)
- Local backup on the primary storage systems and Gateways
- RAID-DP protection enabled
- Capacity partially provisioned at 100% percent oversubscription (thin provisioning, deduplication enabled, cloning enabled)
- Primary storage provisioned by lower-end storage systems and Gateways
- Multi-tenancy support

Storage services configuration assumptions

This workflow example assumes that the protection policies, provisioning policies, resource pools, and vFiler templates required to support the storage services already exist.

Gold level storage services support assumptions

To support the company's Gold level storage service offering, this workflow assumes the following provisioning and protection elements are already configured:

- Protection policy: "Gold protection" This policy is a 3-node disaster recovery capable protection policy, supporting the Gold level requirement: Disaster recovery capable mirror, then backup protection with 10-minute mirror updates, nightly backup, and 30-day retention on the tertiary node.
- Resource pools: "Primary resources" and "Secondary resources" These resource pools can provision the Primary node and mirror node. Each pool must include among its resources pairs of high-end storage systems and gateways (for example, N7000 series systems) that are configured for controller-redundancy (CFO) protection.
- Resource pool: "Tertiary resources" This resource pool can provision the tertiary back up node. It includes among its resources basic performance, high-capacity storage systems and gateways (for example, N3400 systems).
- Provisioning policy: "Gold mirror provisioning" This provisioning policy can be assigned to provision the primary and mirror nodes. For provisioning it is configured to select high-end storage systems, paired and configured for controller-redundancy protection and licensed for SnapMirror support also.
- Provisioning policy: "Backup provisioning" This provisioning policy can be assigned to provision the backup node. For provisioning it is configured to select basic performance storage systems and gateways licensed for SnapVault support.
- vFiler units:

Gold primary vfiler1 Gold primary vfiler2 Gold secondary vfiler1 Gold_secondary_vfiler2 Gold tertiary vfiler1 Gold tertiary vfiler2

Preexisting vFiler units enable you to provide storage services to multiple subscribers on the same physical storage resources.

Silver_level storage services support assumptions

To support the company's Silver_level storage service offering, this workflow assumes the following provisioning and protection elements are already configured:

- Protection policy: "Silver_protection"
 This policy is a 2 node backup policy, supporting the Silver_storage requirement: Backup from primary to secondary storage nightly at 24 hour intervals with 30 day retention on the secondary node.
- Resource pool: "Primary_resources"
 This resource pool can provision the primary node for the Silver_level storage service. It must include among its resources high-end storage systems and gateways (for example, N7000 series systems) that are licensed for SnapVault and SnapMirror support.
- Resource pool: "Secondary_resources"
 This resource pool can provision the backup node for the Silver_level service. It includes among its resources basic performance, high-capacity storage systems (for example, N3400 systems) licensed for SnapVault and SnapMirror support.
- Provisioning policy: "Silver_primary_provisioning"
 This provisioning policy can be assigned to provision the primary node. For provisioning it is configured to select high-end storage systems and gateways, licensed for RAID-DP, SnapVault and SnapMirror support. Automated deduplication is enabled for this provisioning policy.
- Provisioning policy: "Backup_provisioning"
 This provisioning policy can be assigned to provision the backup node. For provisioning it is configured to select basic performance storage systems and gateways licensed for SnapVault support.
- vFiler units:

```
Silver_primary_vfiler1
Silver_primary_vfiler2
Silver_secondary_vfiler1
Silver_secondary_vfiler2
```

Preexisting vFiler units enable you to provide storage services to multiple subscribers on the same physical storage resources.

Bronze_level storage services support assumptions

To support the company's Bronze_level storage service offering, this workflow assumes the following provisioning and protection elements are already configured:

- Protection policy: "Bronze_protection"
 This policy is a 2 node mirror policy, supporting the Bronze_storage requirement: Mirror from primary to secondary storage nightly at 24 hour intervals with 30 day retention on the secondary node
- Resource pool: "Primary resources"

This resource pool can provision the mirror node for the Bronze level storage service. It must include among its resources basic performance, mid-range storage systems and gateways (for example, N6000 series systems) licensed for SnapVault and SnapMirror support.

- Provisioning policy: "Mirror provisioning" This provisioning policy can be assigned to provision the mirror node. For provisioning it is configured to select basic performance, licensed for SnapMirror support. Automated deduplication is enabled for this provisioning policy.
- vFiler template: Bronze vfiler template 1 Specifying a vFiler template for a storage service gives you the option of specifying the creation of a new template-based vFiler unit on an "as needed" basis and attaching that vFiler unit to the primary node when you use that storage service to create a dataset.
- vFiler template: Bronze vfiler template 2 Specifying a vFiler template for a storage service gives you the option of specifying the creation of a new template-based vFiler unit on an "as needed" basis and attaching that vFiler unit to the mirror node when you use that storage service to create a dataset.

Create the "Gold_level" storage service

As storage administrator, you want to create a high-end "Gold level" storage service, to provide a standard configuration that supports the top level of three levels of data storage, protection, and provisioning services that you offer.

About this task

In this example workflow, a vFiler template is not assigned to the storage service.

Steps

- 1. From the menu bar, click Policies > Storage Services.
- 2. Click Add Service to open the Add Storage Service wizard.
- 3. Complete the wizard, using the following values:
 - General properties

Name: Gold level

Description: High performance, space guaranteed, failover mirror and backup storage

Owner: m marks

Contact: m marks@abc storage.com

• Group properties: Group A

• Protection Policy: Gold protection

• Node Configuration for Primary Data

Provisioning policy: Gold provisioning

vFiler template: none

Resource pools: Primary resources

• Node Configuration for the DR node:

Provisioning policy: Gold_provisioning Resource pools: Secondary_resources

• Node Configuration for Backup node

Provisioning policy: Backup provisioning

Resource pools: Tertiary resources

4. Confirm the summary results, and then click **Finish** to complete the wizard.

Result

The Storage Services window lists "Gold_level" storage service along with any other existing storage services

After creating a storage service you can attach it to new or existing datasets.

After you finish

In this example workflow, this new storage service is used to create a new dataset with "Gold_level" services.

Create the "Silver_level" storage service

As storage administrator, you want to create a medium-level "Silver_level" storage service, to provide a standard configuration that supports the intermediate level of three levels of data storage, protection, and provisioning services that you offer.

About this task

In this example workflow, vFiler templates are not assigned to the storage service.

Steps

- 1. From the menu bar, click **Policies > Storage Services**.
- 2. Click Add Service to open the Add Storage Service wizard.
- **3.** Complete the wizard, using the following values:
 - General properties:

Name: Silver level

Description: High performance, 50 percent oversubscribed, deduplication-enabled,

backup-protected storage

Owner: m marks

Contact: m marks@abc storage.com

• Group properties: Group A

• Protection Policy: Silver protection Node Configuration for Primary Data

Provisioning policy: Silver primary provisioning

Resource pools: Primary resources • Node Configuration for Backup node

> Provisioning policy: Backup provisioning Resource pools: Secondary_resources

4. Confirm the summary results, and then click **Finish** to complete the wizard.

Result

The Storage Services window lists "Silver level" storage service along with any other existing storage services.

After creating a storage service you can attach it to new or existing datasets.

After you finish

In this example workflow, you attach this new storage service to an existing dataset to configure it with your standard "Silver level" storage services.

Create the "Bronze level" storage service

As storage administrator, you want to create a basic-level "Bronze level" storage service, to provide a standard configuration that supports the most basic level of three levels of data storage, protection, and provisioning services that you offer.

About this task

In this example workflow, a vFiler template is assigned to the storage service.

Steps

- 1. From the menu bar, click **Policies** > **Storage Services**.
- 2. Click Add Service to open the Add Storage Service wizard.
- **3.** Complete the wizard, using the following values:
 - General properties

Name: Bronze level

Description: Basic performance, low-cost storage service

Owner: m marks

Contact: m marks@abc storage.com

• Group properties: Group A

• Protection Policy: Bronze protection (Local Backup)

• Node Configuration for Primary Data

Provisioning policy: Bronze primary provisioning

vFiler template: Bronze_vfiler_template_1

Resource pools: Primary_resources
• Node Configuration for Mirror Node

Provisioning policy: Bronze mirror provisioning

vFiler template: Bronze_vfiler_template_2 Resource pools: Secondary resources

4. Confirm the summary results, and then click **Finish** to complete the wizard.

Result

The Storage Services window lists "Bronze_level" storage service along with any other existing storage services.

After you finish

After creating a storage service you can attach it to a new or existing dataset to configure it with your standard "Bronze level" storage services.

Create a dataset using the "Gold_level" storage service

As storage administrator you are requested to set up a new Gold level storage space for a subscriber.

About this task

After you create the new dataset with the storage service "Gold_level" attached to the "Gold_subscriber_A_data" dataset, that dataset uses only the protection policy, provisioning policies and resource pools specified by that storage service.

In this example workflow, you assign existing vFiler units to front the dataset's primary, mirror, and backup nodes. This action enables you to provide storage services to multiple subscribers through multiple vFiler units on single physical storage systems.

Steps

1. From the menu bar, click Data > Datasets > Overview.

- 2. Click Add dataset; then select the Using Storage Service option to open the Add Dataset Using Storage Service wizard.
- **3.** Complete the wizard, using the following values:
 - General properties:

Name: Gold subscriber A data

Description: High performance, space guaranteed, failover mirror and backup storage for

Gold subscriber A Owner: Marco

Contact: Marco@gold-subscriber A.com

Time zone: San Francisco

- Service Selection properties: Gold level
- Dataset Export:

NFS Export Settings on

CIFS Export Setting on

• Automated Online Migration:

Primary data: not enabled DR Mirror: no settings Backup node: no settings

vFiler Units:

Primary data: Gold primary vfiler1 DR Mirror: Gold secondary vfiler1 Backup node: Gold tertiary vfiler1

• Provision storage: Yes Container name and size

Name: vol1

Description: Gold subscriber A vol1

Data space: 16 MB

4. Confirm the conformance results, and then click **Next** and **Finish** to complete the wizard.

Result

The Datasets window Overview tab lists the new dataset with the newly attached "Gold level" storage service.

Attach the "Silver_level" storage service to an existing dataset

As the storage administrator, you want to attach the newly configured "Silver_level" storage service to an existing dataset to bring the configuration of that dataset into conformance with the newly defined configuration standards.

About this task

After you attach "Silver_level" storage service to the existing dataset (Subscriber_123_data), that dataset uses only the protection policy, provisioning policies and resource pools specified by that storage service.

Steps

- 1. From the menu bar, click Data > Datasets > Overview.
- 2. Select the dataset whose storage service configuration you want to bring into conformance (Subscriber_123_data) and click **Attach Service** to open the **Attach Storage Service** wizard.
- **3.** Complete the wizard, using the following values:
 - Storage Services
 Select Silver level.
 - Node Mapping
 Select any node mapping that specifies Primary data to Primary data and Backup to Backup.
- 4. Confirm the conformance results, and then click **Next** and **Finish** to complete the wizard.

Result

The Datasets window Overview tab lists the selected dataset with the newly attached "Silver_level" storage service.

Create multiple datasets using the "Bronze level" storage service

As storage administrator, you are requested to set up three new Bronze level storage spaces for two different subscribers.

About this task

In this example workflow, you use the "Bronze level" storage service to create two datasets for Bronze subscriber A and one dataset for Bronze subscriber B. These newly created datasets use only the protection policy, provisioning policies, and resource pools specified by that storage service.

As described earlier in "Create the "bronze" storage service," the "Bronze level" storage service includes the vFiler templates "Bronze vfiler template 1" and "Bronze vfiler template 2". For the datasets that you create with this storage service, the storage services feature creates new vFiler units based on this template and attaches them to the primary node and secondary node respectively. This action enables you to provide storage services to multiple subscribers through multiple vFiler units that are created on an "as needed" basis on single physical storage systems.

Steps

- 1. From the menu bar, click **Data > Datasets > Overview**.
- 2. Click Add dataset; then select the Using Storage Service option to open the Add Dataset Using Storage Service wizard.
- 3. To create the first dataset for Bronze subscriber A, complete the wizard, using the following values:
 - General properties:

Name: Bronze subscriber A data

Description: High-density and low-cost storage with local backup for

Bronze subscriber A

Owner: Gary

Contact: gary@bronze-subscriber A.com

Time zone: San Francisco

- Service Selection properties: Bronze level
- Dataset Export:

NFS Export Settings on

CIFS Export Setting on

• New vFiler unit (template-based vFiler unit attached to the primary node):

IP address for data access: 172.26.18.111

Network mask: 255.255.255.0

automated online migration: not enabled

• New vFiler unit (template-based vFiler unit attached to the secondary node):

IP address for data access: 172.26.18.112

Network mask: 255.255.255.0

automated online migration: not enabled

Provision storage: YesContainer name and size

Name: vol1

Description: Bronze_subscriber_A_data_1_vol1

Data space: 16 MB

- 4. Confirm the conformance results, and then click **Next** and **Finish** to complete the wizard.
 - The Datasets window Overview tab lists the new "Bronze_subscriber_A_data" dataset with the newly attached "Bronze_level" storage service.
 - The vFiler Units window lists the new "Bronze_subscriber_A_data" and "Bronze_subscriber_A_data_Mirror" vFiler units.

Note: The storage services feature assigns a vFiler unit name based on the name of the dataset for which it is created. For secondary node, the node name is suffixed along with the dataset name

- 5. To create the second dataset for Bronze_subscriber_A, rerun the **Add Dataset Using Storage** Service wizard, using the following values:
 - General properties:

Name: Bronze subscriber A data 2

Description: High-density and low-cost storage with local backup for

Bronze subscriber A

Owner: Gary

Contact: gary@bronze-subscriber A.com

Time zone: San Francisco

- Service Selection properties: Bronze level
- Dataset Export:

NFS Export Settings on

CIFS Export Setting on

• vFiler Units (existing vFiler unit attached to the primary node):

Primary data: Bronze subscriber A data

- Provision storage: Yes
- Container name and size

Name: vol1

Description: Bronze subscriber A data 2 vol1

Data space: 16 MB

6. Confirm the conformance results, and then click **Next** and **Finish** to complete the wizard.

The Datasets window Overview tab lists the new "Bronze_subscriber_A_data_2" dataset with the newly-attached "Bronze level" storage service.

- 7. To create a new dataset for Bronze_subscriber_B, rerun the **Add Dataset Using Storage Service** wizard, using the following values:
 - General properties:

Name: Bronze_subscriber_B_data

Description: High-density and low-cost storage with local backup for

Bronze subscriber B

Owner: Alfred

Contact: alfred@bronze-subscriber B.com

Time zone: San Francisco

- Service Selection properties: Bronze level
- Dataset Export:

NFS Export Settings on

CIFS Export Setting on

New vFiler unit:

IP address for data access: 172.26.18.114

Network mask: 255.255.255.0

automated online migration: not enabled

• Provision storage: Yes

Container name and size

Name: vol1

Description: Bronze subscriber B data vol1

Data space: 16 MB

- 8. Confirm the conformance results, and then click **Next** and **Finish** to complete the wizard.
 - The Datasets window Overview tab lists the new "Bronze_subscriber_B_data" dataset with the newly attached "Bronze_level" storage service.
 - The vFiler Units window lists the new "Bronze subscriber B data" vFiler unit.

Result

Your completed steps create the following elements:

• For Bronze subscriber A

Two datasets (Bronze_subscriber_A_data and Bronze_subscriber_A_data_2) accessed through a common vFiler unit (Bronze_subscriber_A_data)

 For Bronze_subscriber_B
 One dataset (Bronze_subscriber_B_data) accessed through a vFiler unit (Bronze_subscriber_B_data)

Combined N series Management Console protection capability and SnapManager database protection example workflow

This is a step-by-step example of how a database administrator (DBA) operating SnapManager for Oracle and a storage administrator operating N series Management Console might integrate a managed Oracle database with an N series Management Console dataset and configure scheduled, policy-based protected backup of that database to secondary storage.

For descriptions of some of the concepts and terminology associated with the N series Management Console data protection capability, see *Introduction to provisioning and protection* on page 11 if possible.

For administrative tasks and additional reference and conceptual information associated with the N series Management Console data protection capability, see the N series Management Console Help. For administrative tasks, command reference, and conceptual information associated with SnapManager for Oracle, see the *SnapManager for Oracle Installation and Administration Guide*. For tasks and conceptual information related to using the SnapManager for Oracle graphical user interface, see the online Help.

The following list describes the concepts and the workflows you and your DBA or storage administrator partner need to complete.

Steps

- 1. Plan to implement combined database protection on page 130
- **2.** Use the N series Management Console data protection capability to configure a secondary resource pool on page 137
- **3.** Use the N series Management Console data protection capability to configure secondary backup schedules on page 138
- **4.** Use the N series Management Console data protection capability to configure a secondary backup protection policy on page 139
- **5.** Use SnapManager for Oracle to create the database profile and assign a protection policy on page 141
- **6.** Use the N series Management Console data protection capability to provision the new dataset on page 143
- 7. Use SnapManager for Oracle to create a protected backup on page 144
- 8. Use SnapManager for Oracle to confirm backup protection on page 145
- 9. Use SnapManager for Oracle to restore backups from secondary storage on page 145

Plan to implement combined database protection

When you plan to implement the combined N series Management Console and SnapManager database protection, consider the specific requirements of your protection job, the target database, the protection topology that you want to implement, and backup schedule and retention strategy that you want to support.

Protected database backup

SnapManager and N series Management Console, when installed on a UNIX host and on the DataFabric Manager server respectively, give the SnapManager database administrator (DBA) the ability to configure and perform policy-based Oracle database backups to secondary storage, and to restore, if necessary, the backed up data from secondary to primary storage.

- In SnapManager terminology, nonlocal database backup from primary storage to secondary storage is called "protected backup."
- Although a typical database backup configuration enables the DBA to perform both local backup
 on the primary storage system and protected backup to a secondary storage system, this chapter
 describes only the configuration tasks necessary to support database protected backup, which
 requires the coordination of both SnapManager and N series Management Console products.
- To perform protected backup, the DBA of the target database, requires read access to the secondary storage system in addition to the normal read and write access to primary storage systems.
- The storage administrator requires read and write access to both primary storage systems and secondary storage systems.

Details of the target database

This example of integrated database protection describes the protection of a payroll database. The following data is used in the example.

The database administrator (DBA) at TechCo, a 3,000-person company headquartered in Atlanta, must create a consistent backup of the production payroll database, PAYDB. The protection strategy for backing up to primary and secondary storage requires that the DBA and the storage administrator work together to back up the Oracle database both locally on primary storage and also remotely, to secondary storage at a remote location.

Profile information

When creating a profile in SnapManager, you need the following data:

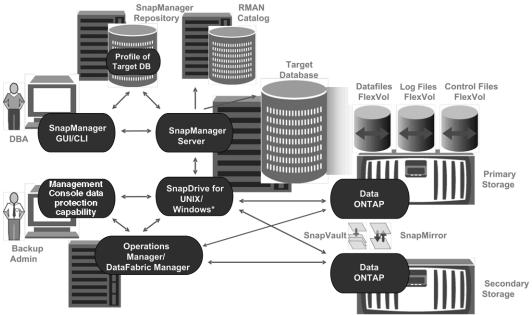
• Database name: PAYDB

• Host name: payroll.techco.com

• Database ID: payrolldb

Profile name: payroll prod

· Connection mode: Database authentication


• Snapshot naming scheme: smo_hostname_dbsid_smoprofile_scope_mode_smid (which translates to "smo payroll.xyz.com payrolldb payroll prod f h x")

Primary and secondary storage configuration and topology

In this example, the TechCo corporation runs its payroll database on a database server that is also a SnapManager for Oracle host and stores its payroll database data and configuration files on primary storage systems at the company headquarters. The corporate requirement is to protect that database with daily and weekly backups to local storage as well as backups to storage systems at a secondary storage site fifty miles away.

The following illustration shows the SnapManager for Oracle and the N series Management Console data protection capability components required to support local and secondary backup protection.

Architecture

* Data protection & RBAC not available on Windows

To manage the payroll database and support its local and secondary backup protection as illustrated in the previous graphic, the following deployment is used.

SnapManager host

The SnapManager host, payroll.techco.com, is located at the company headquarters and runs on a UNIX server, which also runs the database program that generates and maintains the payroll database.

Connections

To support local backup and secondary backup protection, the SnapManager host has network connections to the following components:

- SnapManager for Oracle client
- SnapManager repository, which runs the database program, SnapDrive for UNIX, and SnapManager
- Primary storage systems
- Secondary storage systems
- DataFabric Manager server

Installed products

The SnapManager host is installed with the following products for this example:

- SnapManager server
- SnapDrive for UNIX
- **Host Utilities**

TechCo systems

The payroll database, including associated data files, log files, and control files, **primary storage** reside on the primary storage systems. These are located at the TechCo company headquarters along with the SnapManager host and the network connecting primary storage and the SnapManager host. The latest payroll database transactions and updates are written to the primary storage systems. Snapshot copies, which provide local backup protection of the payroll database, also reside on the primary storage systems.

Connections

To support secondary backup protection, the primary storage systems have network connections to the following components:

- SnapManager host running the database program, SnapDrive for UNIX, and SnapManager
- Secondary storage systems
- DataFabric Manager server

Installed products

The following licenses must be enabled on these systems for this example:

- Data ONTAP 7.3.1 or later
- SnapVault Data ONTAP Primary
- FlexVol (required for NFS)
- SnapRestore
- NFS protocol

TechCo secondary storage systems

The secondary storage systems, located at a network-connected secondary storage site fifty miles away, are used to store secondary backups of the payroll database.

Connections

To support secondary backup protection, the secondary storage systems have network connections to the following components:

- Primary storage systems
- DataFabric Manager server

Installed products

The following licenses must be enabled on the secondary storage systems for this example:

- Data ONTAP
- SnapVault Data ONTAP Secondary
- SnapRestore
- FlexVol (required for NFS)
- NFS protocol

DataFabric Manager server

The DataFabric Manager server, techco_dfm, is located at the company headquarters in a location accessible by the storage administrator. The DataFabric Manager server, among other functions, coordinates the backup tasks between primary and secondary storage.

Connections

To support secondary backup protection, the DataFabric Manager server maintains network connections to the following components:

- Management Console
- Primary storage systems
- Secondary storage systems

Installed products

The DataFabric Manager server is licensed for the following server products for this example:

DataFabric Manager

SnapManager repository

The SnapManager repository, located on a dedicated server, stores data about operations performed by SnapManager, for example the time of backups, tablespaces and datafiles backed up, storage systems used, clones made, and Snapshot copies created. When a DBA attempts a full or partial restore, SnapManager queries the repository to identify backups that were created by SnapManager for Oracle for restoration.

Connections To support secondary backup protection, the secondary storage systems have network connections to the following components:

- SnapManager host
- SnapManager for Oracle client

Management Console

The Management Console is the graphical user interface console used by the storage administrator to configure schedules, policies, datasets, and resource pool assignments to enable backup to secondary storage systems, which are accessible to the storage administrator.

Connections To support secondary backup protection, Management Console has network connections to the following components:

- · Primary storage systems
- Secondary storage systems
- DataFabric Manager server

SnapManager for Oracle client

The SnapManager for Oracle client is the graphical user interface and commandline console used by the DBA for the payroll database in this example to configure and carry out local backup and backup to secondary storage.

Connections

To support local backup and secondary backup protection, SnapManager for Oracle client has network connections to the following components:

- SnapManager host
- SnapManager repository, running the database program, SnapDrive for UNIX, and SnapManager
- Database host (if separate from the host running SnapManager)
- DataFabric Manager server

Installed products

To support local backup and secondary backup protection, the SnapManager for Oracle client software must be installed on this component.

Backup schedule and retention strategy

The DBA wants to ensure that backups are available in case of a loss of data, in case of a disaster, and for regulatory reasons. This requires a carefully thought out retention policy for the various databases.

For the production payroll database, the DBA adheres to the following TechCo retention strategy:

Backup frequency	Retention duration	Backup time	Type of storage
Once daily	10 days	7 p.m.	Primary (local)
Once daily	10 days	7 p.m.	Secondary (archive)
Once weekly	52 weeks	Saturdays 1 a.m.	Secondary (archive)

advantages

Local backup Daily local backup provides database protection, which is instantaneous, uses zero network bandwidth, uses a minimum of additional storage space, provides instantaneous restore, and provides finely-grained backup and restore capability.

> Because the final weekly backups of the payroll database are retained for a minimum 52 weeks at a secondary storage site, there is no need to retain the daily backups any longer than 10 days.

Protected backup advantages

Daily and weekly backups to secondary storage at a remote location guarantee that if the data at the primary storage site is damaged, the target database is still protected and can be restored from secondary storage.

The daily backups to secondary storage are made to protect against primary storage system damage. Because the final weekly backups of the payroll database are retained for a minimum 52 weeks, there is no need to retain the daily backups any longer than 10 days.

Workflow summary for database protected backup

In this example, the DBA (using SnapManager) and the storage administrator (using the N series Management Console data protection capability) coordinate actions to configure protected backup of the target database.

The sequence of actions carried out is summarized as follows:

Secondary		
resource pool		
configuration		

The storage administrator uses the N series Management Console data protection capability to configure a resource pool of storage systems at the secondary site that can be used to store the payroll database backup.

Protected backup scheduling

The storage administrator uses the N series Management Console data protection capability to configure protected backup schedules.

Protection policy configuration

The storage administrator uses the N series Management Console data protection capability to configure a protected backup protection policy for the target database. The protection policy includes the schedules and specifies the base type of protection to implement backup protection (backup, mirror, or a combination of both), and names and retention policies for primary data, secondary, and sometimes tertiary storage nodes.

assignment

The DBA uses SnapManager to create or edit a profile of the target database that supports protected backup. While configuring the profile, the DBA performs the following tasks:

- Enables backup protection to secondary storage
- Assigns the new protection policy, which was created in and retrieved from the N series Management Console data protection capability, to this profile

Assigning the protection policy automatically includes the target database in a partially provisioned, but nonconformant the N series Management Console data protection capability dataset. When fully provisioned, the dataset configuration enables backup of the target database to secondary storage

Secondary and tertiary storage provisioning

The storage administrator uses the N series Management Console data protection capability to assign resource pools to provision the secondary and sometimes tertiary storage nodes (if the assigned protection policy specifies tertiary storage nodes).

Backup on local storage

The DBA opens the profile with protection enabled in SnapManager and creates a full backup to local storage. The new backup shows in SnapManager as scheduled for protection, but not yet protected. After the next the N series Management Console data protection capability executed backup occurs the backup is protected.

Protected backup confirmation

The DBA uses SnapManager to confirm the completion of the protected backup. After either an on-demand backup or a scheduled backup has been copied to secondary storage, SnapManager changes the backup Protection State from "Not protected" to "Protected."

Protected backup configuration and execution

Configuring SnapManager and the N series Management Console data protection capability to support database backup to secondary storage requires that the database administrator and the storage administrator coordinate their actions.

Use the N series Management Console data protection capability to configure a secondary resource pool

To support backup of the database to secondary storage, the storage administrator uses the N series Management Console data protection capability to organize the secondary storage systems enabled with the SnapVault Secondary license into a resource pool for the backups.

Before you begin

Ideally, storage systems in a resource pool are interchangeable in terms of their acceptability as destinations for backups. When developing the protection strategy for the payroll database, you, as the storage administrator, identified secondary storage systems with similar performance and quality of service levels that would be suitable members of the same resource pool.

You have already created aggregates of unused space on storage systems that you intend to assign to resource pools. This ensures that there is adequate space to contain the backups.

Steps

- 1. Go to Management Console.
- 2. From the menu bar, click **Data** > **Resource Pools**.

The Resource Pools window appears.

3. Click Add.

The Add Resource Pool wizard starts.

4. Complete the steps in the wizard to create the **paydb backup resource** resource pool.

Use the following settings:

- Name: Use paydb-backup resource
- Space thresholds (use the defaults):
 - Space utilization thresholds: enabled
 - Nearly Full threshold (for resource pool): 80%
 - Full threshold (for resource pool): 90%

Use the N series Management Console data protection capability to configure secondary backup schedules

To support backup of the database to secondary storage, the storage administrator uses the N series Management Console data protection capability to configure a backup schedule.

Before you begin

Before configuring the schedule for secondary backups, the storage administrator confers with the DBA partner for the following information:

• The schedule that the DBA wants the secondary backups to follow.

In this case, once-daily backups at 7 p.m. and once-weekly backups on Saturday at 1 a.m.

Steps

- 1. Go to the Management Console.
- 2. From the menu bar, click Policies > Protection > Schedules.

The Schedules tab of the Protection Policies window is displayed.

- 3. Select the daily schedule **Daily at 8:00 PM** from the list of schedules.
- 4. Click Copy.

A new daily schedule, Copy of Daily at 8:00 PM, is displayed in the list. It is already selected.

5. Click Edit.

The Edit Daily Schedule property sheet opens to the Schedule tab.

- 6. Change the schedule name to Payroll Daily at 7 PM, update the description; then click Apply. Your changes are saved.
- 7. Click the **Daily Events** tab.

The schedule's current daily backup time of 08:00 PM is displayed.

8. Click Add and enter 7:00 PM in the new time field; then click Apply.

The schedule's current daily backup time is now 07:00 PM.

9. Click **OK** to save your changes and exit the property sheet.

Your new daily schedule, **Payroll Daily at 7 PM**, is displayed in the list of schedules.

- 10. Select the weekly schedule, Sunday at 8:00 PM plus daily, from the list of schedules.
- 11. Click Copy.

A new weekly schedule, **Copy of Sunday at 8:00 PM plus daily**, is displayed in the list. It is already selected.

12. Click Edit.

The Edit Weekly Schedule property sheet opens to the Schedule tab.

- **13.** Change the schedule name to **Payroll Saturday at 1 AM plus daily at 7 PM** and update the description.
- **14.** From the **Daily Schedule** drop-down list, select the daily schedule you just created, **Payroll Daily at 7 PM**.

Selecting **Payroll Daily at 7 PM** means that this schedule defines when daily operations occur when the **Payroll Saturday at 1 AM plus daily at 7 PM** schedule is applied to a policy.

15. Click **OK** to save your changes and exit the property sheet.

Your new weekly schedule, **Payroll Saturday at 1 AM plus daily at 7 PM**, is displayed in the list of schedules.

Use the N series Management Console data protection capability to configure a secondary backup protection policy

After configuring the backup schedule, the storage administrator configures a protected backup storage policy in which that schedule is to be included.

Before you begin

Before configuring the protection policy, the storage administrator confers with the DBA partner for the following information:

- Retention duration to specify for secondary storage
- Type of secondary storage protection required

About this task

The protection policy that is created can be listed in SnapManager for Oracle by the DBA partner and assigned to a database profile for the data to be protected.

Steps

- **1.** Go to Management Console.
- 2. From the menu bar, click **Policies > Protection > Overview**.

The Overview tab on the Protection Policies window is displayed.

- 3. Click Add Policy to start the Add Protection Policy wizard.
- **4.** Complete the wizard with the following steps:
 - a) Specify a descriptive policy name.
 - For this example, enter TechCo Payroll Data: Backup and description; then click Next.
 - b) Select a base policy.
 - For this example, select **Back up** and click **Next**.
 - c) On the Primary Data node policy property sheet, accept the default settings and click Next.
 - **Note:** In this example, the local backup schedule that was configured in SnapManager is applied. Any local backup schedule that is specified through here is ignored.
 - d) On the Primary Data to Backup connection property sheet, select a backup schedule.
 - For this example, select **Payroll Saturday at 1 AM plus daily at 7 PM** as your backup schedule; then click **Next**.
 - In this example, the schedule that you selected includes both the weekly and daily schedules that you configured earlier.
 - e) On the Backup policy property sheet, specify the name for the backup node and the retention times for daily, weekly, or monthly backups.
 - For this example, specify a daily backup retention of 10 days and a weekly backup retention of 52 weeks. After you complete each property sheet, click **Next**.
 - After all property sheets are completed, the Add Protection Policy wizard displays a summary sheet for the protection policy that you want to create.
- 5. Click Finish to save your changes.

Result

The **TechCo Payroll Data: Backup** protection policy is listed among the other policies configured for N series Management Console.

After you finish

The DBA partner can now use SnapManager for Oracle to list and assign this policy when creating the database profile for the data to be protected.

Use SnapManager for Oracle to create the database profile and assign a protection policy

To create a protected backup, the DBA must create a profile in SnapManager for Oracle, enable protection in the profile, and assign a protection policy.

About this task

A profile holds the information about the database being managed, including its credentials, backup settings, and protection settings for backups. Once a profile is created, the DBA does not need to specify database details each time the DBA performs an operation, such as a backup—simply supply the profile name. A profile can reference only one database, but that same database can be referenced by more than one profile.

Steps

- 1. Go to the SnapManager for Oracle client.
- **2.** From the SnapManager Repositories tree, right-click the host you want associated with this profile, and select **Create Profile**.
- 3. In the Profile Configuration Information page, enter the following information and click Next.
 - Profile name: payroll_prod2
 - Profile password: payroll123
 - Comment: Production Payroll database
- 4. In the Database Configuration Information page, enter the following information and click Next.
 - Database name: PAYDB
 - Database SID: payrolldb
 - Database host: Accept the default. Because you are creating a profile from a host in the repository tree, SnapManager displays the host name.
- 5. In the second Database Configuration Information page, accept the following database information and click **Next**:
 - Host Account, representing the Oracle user account: oracle
 - Host Group, representing the Oracle group: dba
- **6.** In the Database Connection Information page, click **Use database Authentication** to allow users to authenticate using database information.

For this example, enter the following information and click **Next**.

• SYSDBA Privileged User Name, representing the system database administrator who has administrative privileges: sys

- Password (SYSDBA password): oracle
- Port to connect to database host: 1521
- 7. In the RMAN Configuration Information page, click **Do not use RMAN** and click **Next**.

Oracle Recovery Manager (RMAN) is an Oracle tool that helps you back up and recover Oracle databases using block-level detection.

8. In the Snapshot Naming Information page, specify a naming convention for the Snapshots associated with this profile by selecting variables. The only variable that is required is the **smid** variable, which creates a unique snapshot identifier.

For this example, do the following:

- a) From the Variable Token list, select the {usertext} variable and click Add.
- b) Enter "payroll.techco.com" as the host name and click **OK**.
- c) Click **Left** until the host name appears just after "smo" in the Format box.
- d) Click Next.

The Snapshot naming convention of smo_hostname_smoprofile_dbsid_scope_mode_smid becomes "smo_payroll.techco.com_payroll_prod2_payrolldb_f_a_x" (where the "f" indicates a full backup, the "a" indicates the automatic mode, and the "x" represents the unique SMID).

 Check the Protection Manager Protection Policy option, select the protection policy, TechCo Payroll Data: Backup, from the protection policies retrieved from Protection Manager, and click Next.

The Protection Manager Protection Policy option enables you to select a protection policy that was configured using N series Management Console.

- 10. In the Perform Operation page, verify the information and click Create.
- **11.** Click **Operation Details** to see information about the profile create operation and volume-based restore eligibility information.

Result

- The assignment of a N series Management Console protection policy to the database profile
 automatically creates a nonconformant dataset, visible to the N series Management Console
 operator, with the name convention smo_<hostname>_profilename>, or in this example:
 smo_payroll.tech.com_PAYDB.
- If the profile is not eligible for volume restore (also called "fast restore"), the following occurs:
 - The Results tab indicates that the profile creation was successful and that warnings occurred during the operation.
 - The Operation Details tab includes a WARNING log, which states the profile is not eligible for fast restore and explains why.

Use the N series Management Console data protection capability to provision the new dataset

After the smo_paydb dataset is created, the storage administrator uses the N series Management Console data protection capability to assign storage system resources to provision the dataset's Backup node.

Before you begin

Before provisioning the newly created dataset, the storage administrator confers with the DBA partner for the following information:

Name of the dataset specified in the profile
 In this case, the dataset name is smo payroll.tech.com PAYDB.

Steps

- 1. Go to Management Console.
- 2. From the menu bar, click Data > Datasets > Overview.

The Datasets tab of the Datasets window displays a list of datasets that includes the dataset that was just created through SnapManager.

3. Locate and select the **smo payroll.tech.com PAYDB** dataset.

When you select this dataset, the graph area displays the smo_paydb dataset with its backup node unprovisioned. Its conformance status is flagged as nonconformant.

4. With the smo paydb dataset still highlighted, click Edit.

The N series Management Console data protection capability displays the Edit Dataset window for the **smo_payroll.tech.com_PAYDB** dataset. The window's navigation pane displays configuration options for the dataset's primary node, backup connection, and backup node.

5. From the navigation pane, locate the options for the dataset's backup node and select **provisioning/resource pools**.

The Edit Dataset window displays a setting for default provisioning policy and a list of available resource pools.

- **6.** For this example, select the **paydb_backup_resource** resource pool and click >.
 - The selected resource pool is listed in the "Resource Pools for this node" field.
- 7. Click **Finish** to save your changes.

Result

The N series Management Console data protection capability automatically provisions the secondary backup node with resources from the paydb_backup_resource resource pool.

Use SnapManager for Oracle to create a protected backup

When creating a backup for this example, the DBA selects to create a full backup, sets backup options, and selects protection to secondary storage. Although the backup is initially made on local storage, because this backup is based on a protection-enabled profile, the backup is then transferred to secondary storage according to the protection policy's schedule as defined in the N series Management Console data protection capability.

Steps

- 1. Go to the SnapManager for Oracle client.
- 2. From the SnapManager Repository tree, right-click the profile containing the database that you want to back up, and select **Backup**.
 - The SnapManager for Oracle Backup Wizard starts.
- **3.** Enter "Production payroll" as the label.
- **4.** Enter "Production payroll Jan 19 backup" as the comment.
- Select "Auto" as the type of backup that you want to create.This allows SnapManager to determine whether to perform an online or offline backup.
- **6.** Select Daily or Weekly as the frequency of the backup.
- 7. To confirm that the backup is in a valid format for Oracle, check the box next to **Verify backup**. This operation uses Oracle DBVerify to check the block format and structure.
- 8. To force the state of the database into the appropriate mode (for example, from open to mounted), select Allow startup or shutdown of database, if necessary, and click Next.
- 9. In the Database, Tablespaces, or Datafiles to Backup page, select Full Backup and click Next.
- 10. To protect the backup on secondary storage, check **Protect the Backup** and click **Next**.
- 11. In the Perform Operation page, verify the information you supplied and click **Backup**.
- 12. In the progress page, view the progress and results of the backup creation.
- 13. To view the details of the operation, click **Operation Details**.

Use SnapManager for Oracle to confirm backup protection

Using SnapManager for Oracle, you can view a list of backups associated with a profile, determine whether the backups were enabled for protection, and view the retention class (daily or weekly, in this example).

About this task

At first, the new backup in this example shows as scheduled for protection, but not yet protected (in the SnapManager graphical user interface and in the backup show command output). After the storage administrator ensures that the backup has been copied to secondary storage, SnapManager changes the backup protection state from "Not protected" to "Protected" in both the graphical user interface and with the backup list command.

Steps

- 1. Go to the SnapManager for Oracle client.
- **2.** In the SnapManager Repository tree, expand the profile to display its backups.
- 3. Click the **Backups/Clones** tab.
- 4. On the Reports pane, select Backup Details.
- 5. View the Protection column and ensure that the status is "Protected."

Use SnapManager for Oracle to restore backups from secondary storage

Administrators can restore protected backups from secondary storage and can choose how they want to copy the data back to the primary storage.

Before you begin

Before you attempt to restore the backup, check the properties of the backup and ensure that the backup is freed on the primary storage system and is protected on secondary storage.

Steps

- From the SnapManager for Oracle Repository tree, right-click the backup you want to restore, and select Restore.
- 2. In the Restore and Recovery Wizard Welcome page, click Next.
- 3. In the Restore Configuration Information page, click Complete Datafile/Tablespace Restore with Control Files.

4. Click Allow shutdown of database if necessary, and then click Next.

SnapManager changes the database state, if necessary. For example, if the database is offline and it needs to be online, SnapManager forces it online.

- 5. At the Recovery Configuration Information page, click All Logs. Then, click Next.
 - SnapManager restores and recovers the database to the last transaction and applies all required logs.
- **6.** In the Restore Source Location Configuration page, select the ID of the protected backup source and click **Next**.
- 7. In the Volume Restore Configuration Information page, click **Attempt volume restore** to attempt volume restore.
- 8. Click Fallback to file-based restore.

This allows SnapManager to use the file-based restore method if the volume restore method cannot be completed.

- **9.** To see the eligibility checks for fast restore and information about mandatory and overridable checks, click **Preview**.
- 10. At the Perform Operation page, verify the information you have supplied and click **Restore**.
- 11. To view details about the process, click **Operation Details**.

Administrator roles and capabilities

The administrator roles determine the tasks you can perform. You must specify one or more capabilities for every role, and you can assign multiple capabilities if you want the administrator to have more control than a specific role provides. You can also customize a set of default global roles and create new roles as necessary.

Default and custom roles

The following table lists the default global roles, descriptions, and capabilities associated with the role.

Administrator role	Role description	Capabilities
GlobalAlarm	You can manage alarms.	DFMAlarmDelete DFMAlarmRead DFMAlarmWrite
GlobalDelete	You can view, modify, or delete information in the management server database, including groups and members of a group, monitored objects, custom views, and primary and secondary storage systems.	DFMAlarmDelete DFMDatabaseDelete DFMReportDelete
GlobalEvent	You can view, acknowledge, and delete events and alerts.	DFMAlarmDelete DFMAlarmRead DFMAlarmWrite DFMEventGenerate DFMEventRead DFMEventWrite
GlobalExecute	You can execute commands on the storage system.	DFMConsoleExecute DFMDatabaseRead DFMDatabaseWrite

Administrator role	Role description	Capabilities
GlobalFullControl	You can view and perform any operation on any object in the management server database and configure administrator accounts. You cannot apply this role to accounts with group access control.	DFMCoreControl DFMCoreDelegate
GlobalRead	You can view the management server database, backup and provisioning configurations, events and alerts, performance data, and policies.	DFMAlarmRead DFMCoreAccessCheck DFMDatabaseRead DFMEventRead DFMReportRead
GlobalReport	You can manage custom reports and report schedules.	DFMReportDelete DFMReportRead DFMReportWrite
GlobalQuota	You can view user quota reports and events.	DFMQuotaFullControl
GlobalWrite	You can view user quota reports and events.	DFMAlarmWrite DFMDatabaseWrite DFMEventGenerate DFMEventWrite DFMReportWrite

List of events and severity types

These tables list all of the events generated by the N series Management Console data protection and provisioning capabilities and Operations Manager and the associated event severity types. Events are listed in alphabetical order by object type.

Use the links in the following table to jump directly to the events for that object.

Note: Performance Advisor uses only the Normal and Error events.

Event categories		
HA configuration Controller on page 150	FC (Fibre Channel) Switch Port on page 158	Protection Policy on page 164 Protection Schedule
	`	• • •
Disks on page 157 Enclosures on page 158	Power Supplies on page 164 Primary on page 164	vFiler Unit Template on page 171 Vserver on page 172 Volume on page 172

HA configuration Controller

Event name	Severity
Can Take Over	Normal
Cannot Takeover	Error

Event name	Severity
Dead	Critical
Takeover	Warning

HA configuration Interconnect

Event name	Severity
Down	Error
Not Present	Warning
Partial Failure	Error
Up	Normal

HA configuration Partner

Event name	Severity
Dead	Warning
May Be Down	Warning
ОК	Normal

HA configuration Settings

Event name	Severity
Disabled	Normal
Enabled	Normal
Not Configured	Normal
Takeover Disabled	Normal
This Controller Dead	Warning

Agent

Event name	Severity
Down	Error
Login Failed	Warning
Login OK	Normal

Event name	Severity
Up	Normal

Aggregate

Event name	Severity
64-bit Upgrade	Information
Almost Full	Warning
Almost Overcommitted	Warning
Deleted	Information
Discovered	Information
Failed	Error
Full	Error
Nearly Over Deduplicated	Warning
Not Over Deduplicated	Normal
Not Overcommitted	Normal
Offline	Error
Online	Normal
Overcommitted	Error
Over Deduplicated	Error
Restricted	Normal
Snapshot Reserve Almost Full	Warning
Snapshot Reserve Full	Warning
Snapshot Reserve OK	Normal
Space Normal	Normal

Alarm

Event name	Severity
Created	Information
Deleted	Information

Event name	Severity
Modified	Information
Test	Information

CFO Interconnect

Event name	Severity
Down	Error
Not Present	Warning
Partial Failure	Error
Up	Normal

CFO Partner

Event name	Severity
Dead	Warning
May Be Down	Warning
ОК	Normal

CFO Settings

Event name	Severity
Disabled	Normal
Enabled	Normal
Not Configured	Normal
Takeover Disabled	Normal
This Node Dead	Warning

CFO This Storage System

Event name	Severity
Can Take Over	Normal
Cannot Take Over	Error
Dead	Critical

Event name	Severity
Takeover	Warning

Cluster

Event name	Severity
Cluster Discovered	Information
Cluster Reachable	Normal
Cluster Not Reachable	Critical
Cluster Renamed	Information
Cluster Node Added	Information
Cluster Node Removed	Information

Cluster port

Event name	Severity
Port Status Up	Normal
Port Status Down	Error
Port Status Undefined	Normal
Port Status Unknown	Normal
Port Role Changed	Information

Comment Field

Event name	Severity
Created	Information
Modified	Information
Destroyed	Information

Configuration Changed

Event name	Severity
Config Group	Information

CPU

Event name	Severity
Load Normal	Normal
Too Busy	Warning

Data Protection

Event name	Severity
Job Started	Information
Policy Created	Information
Policy Modified	Information
Schedule Created	Information
Schedule Modified	Information

Database

Event name	Severity
Backup Failed	Error
Backup Succeeded	Information
Restore Failed	Error
Restore Succeeded	Information

Dataset

Event name	Severity
Backup Aborted	Warning
Backup Completed	Normal
Backup Deleted	Information
Backup Failed	Error
Backup Prematurely Deleted	Warning
Created	Information
Deleted	Information

Event name	Severity
DR State Ready	Information
DR State Failover Over	Warning
DR State Failed Over	Information
DR State Failover Error	Error
DR Status Normal	Information
DR Status Warning	Warning
DR Status Error	Error
Initializing	Information
Job Failure	Warning
Member Clone Snapshot Discovered	Information
Member Clone Snapshot Status OK	Information
Member Dedupe Operation Failed	Error
Member Dedupe Operation Succeeded	Normal
Member Destroyed	Information
Member Destroy Operation Failed	Information
Member Resized	Information
Member Resize Operation Failed	Information
Modified	Information
Protected	Normal
Protection Failed	Error
Protection Lag Error	Error
Protection Lag Warning	Warning
Protection Suspended	Warning
Protection Uninitialized	Normal
Provisioning Failed	Error
Provisioning OK	Normal
Space Status: Normal	Normal

Event name	Severity
Space Status: Warning	Warning
Space Status: Error	Error
Write Guarantee Check - Member Resize Required	Warning
Write Guarantee Check - Member Size OK	Normal

Dataset Backup

Event name	Severity
Dataset Backup: Deleted	Information
Dataset Backup: Prematurely Deleted	Warning

Dataset Conformance

Event name	Severity
Conformant	Normal
Conforming	Information
Initializing	Information
Nonconformant	Warning

Disks

Event name	Severity
No Spares	Warning
None Failed	Normal
None Reconstructing	Normal
Owner changed	Warning
Some Failed	Error
Some Reconstructing	Warning
Spares Available	Normal

Enclosures

Event name	Severity
Active	Information
Disappeared	Warning
Failed	Error
Found	Normal
Inactive	Warning
ОК	Normal

Fans

Event name	Severity
Many Failed	Error
Normal	Normal
One Failed	Error

FC (Fibre Channel) Switch Port

Event name	Severity
Faulty	Error
Offline	Warning
Online	Normal

Filer Configuration

Event name	Severity
Changed	Warning
OK	Normal
Push Error	Warning
Push OK	Normal

Global Status

Event name	Severity
Critical	Critical
Non Critical	Error
Non Recoverable	Emergency
OK	Normal
Other	Warning
Unknown	Warning

HBA Port

Event name	Severity
Offline	Warning
Online	Normal
Port Error	Error
Traffic High	Warning
Traffic OK	Normal

Host

Event name	Severity
Cluster Configuration Error	Error
Cluster Configuration OK	Normal
Cold Start	Information
Deleted	Information
Discovered	Information
Down	Critical
Identity Conflict	Warning
Identity OK	Normal
Login Failed	Warning
Login OK	Normal

Event name	Severity
Modified	Information
Name Changed	Information
SNMP Not Responding	Warning
SNMP OK	Normal
System ID Changed	Information
Up	Normal

Host Agent

Event name	Severity
Down	Error
Up	Normal
Host Agent: Login Failed	Warning

Inodes

Event name	Severity
Almost Full	Warning
Full	Error
Utilization Normal	Normal

Interface Status

Event name	Severity
Down	Error
Testing	Normal
Unknown	Normal
Up	Normal

Logical Interface

Event name	Severity
Logical Interface Status Up	Normal

Event name	Severity
Logical Interface Status Down	Error
Logical Interface Status Unknown	Normal
Logical Interface Migrated	Warning

LUN

Event name	Severity
Offline	Warning
Online	Normal
Snapshot Not Possible	Warning
Snapshot Possible	Normal

Management Station

Event name	Severity
Enough Free Space	Normal
File System File Size Limit Reached	Error
License Expired	Error
License Nearly Expired	Warning
License Not Expired	Normal
Load OK	Normal
Load Too High	Warning
Node Limit Nearly Reached	Warning
Node Limit OK	Normal
Node Limit Reached	Error
Not Enough Free Space	Error
Provisioning Manager Node Limit Nearly Reached	Warning
Provisioning Manager Node Limit Ok	Normal
Provisioning Manager Node Limit Reached	Error
Protection Manager Node Limit Nearly Reached	Warning

Event name	Severity
Protection Manager Node Limit Ok	Normal
Protection Manager Node Limit Reached	Error

Migration

Event name	Severity
Dataset Not Migrating	Normal
Dataset Migrating	Normal
Dataset Migrated With Errors	Warning
Dataset Migrated	Normal
Dataset Migrate Failed	Error
vFiler Unit Not Migrating	Normal
vFiler Unit Migrating	Normal
vFiler Unit Migrated With Errors	Warning
vFiler Unit Migrated	Normal
vFiler Unit Migrate Failed	Error

NDMP

Event name	Severity
Credentials Authentication Failed	Warning
Credentials Authentication Succeeded	Normal
Communication Initialization Failed	Warning
Communication Initialization Succeeded	Normal
Down	Warning
Up	Normal

Network

Event name	Severity
OK	Normal

Event name	Severity
Too Large	Warning

Network Services

Event name	Severity
CIFS Service - Up	Normal
CIFS Service - Down	Warning
NFS Service - Up	Normal
NFS Service - Down	Warning
iSCSI Service - Up	Normal
iSCSI Service - Down	Warning
FCP Service - Up	Normal
FCP Service - Down	Warning

No Schedule Conflict

Event name	Severity
Between Snapshot and SnapMirror Schedules	Normal
Between Snapshot and SnapVault Schedules	Normal

NVRAM Battery

Event name	Severity
Discharged	Error
Fully Charged	Normal
Low	Warning
Missing	Error
Normal	Normal
Old	Warning
Overcharged	Warning
Replace	Error

Event name	Severity
Unknown Status	Warning

OSSV (Open Systems SnapVault)

Event name	Severity
Host Discovered	Information

Performance Advisor

Event name	Severity
Enough Free Space	Normal
Not Enough Free Space	Error

Power Supplies

Event name	Severity
Many Failed	Error
Normal	Normal
One Failed	Error

Primary

Event name	Severity
Host Discovered	Information

Protection Policy

Event name	Severity
Created	Information
Deleted	Information
Modified	Information

Protection Schedule

Event name	Severity
Created	Information
Deleted	Information
Modified	Information

Provisioning Policy

Event name	Severity
Created	Information
Deleted	Information
Modified	Information

Qtree

Event name	Severity
Almost Full	Warning
Files Almost Full	Warning
Files Full	Error
Files Utilization Normal	Normal
Full	Error
Growth Rate Abnormal	Warning
Growth Rate OK	Information
Space Normal	Normal

Remote Platform Management (RPM)

Event name	Severity
Online	Normal
Unavailable	Critical

Resource Group

Event name	Severity
Created	Information
Deleted	Information
Modified	Information

Resource Pool

Event name	Severity
Created	Information
Deleted	Information
Modified	Information
Space Full	Error
Space Nearly Full	Warning
Space OK	Normal

SAN Host LUN Mapping

Event name	Severity
Changed	Warning

Script

Event name	Severity
Critical Event	Critical
Emergency Event	Emergency
Error Event	Error
Information Event	Information
Normal Event	Normal
Warning Event	Warning

SnapMirror

Event name	Severity
Abort Completed	Normal
Abort Failed	Error
Break Completed	Normal
Break Failed	Error
Date OK	Normal
Delete Aborted	Warning
Delete Completed	Information
Delete Failed	Error
Deleted	Information
Discovered	Information
Initialize Aborted	Warning
Initialize Completed	Normal
Initialize Failed	Error
Modified	Information
Nearly Out of Date	Warning
Not Scheduled	Normal
Not Working	Error
Off	Normal
Out of Date	Error
Possible Problem	Warning
Quiesce Aborted	Warning
Quiesce Completed	Normal
Quiesce Failed	Error
Resume Completed	Normal
Resume Failed	Error
Resync Aborted	Warning
Resync Completed	Normal

Event name	Severity
Resync Failed	Error
Unknown State	Warning
Update Aborted	Warning
Update Completed	Normal
Update Failed	Error
Working	Normal

Snapshot(s)

Event name	Severity
Age Normal	Normal
Age Too Old	Warning
Count Normal	Normal
Count OK	Normal
Count Too Many	Error
Created	Normal
Failed	Error
Full	Warning
Schedule Conflicts with the SnapMirror Schedule	Warning
Schedule Conflicts with the SnapVault Schedule	Warning
Schedule Modified	Information
Scheduled Snapshots Disabled	Information
Scheduled Snapshots Enabled	Normal
Space OK	Normal

SnapVault

Event name	Severity
Backup Aborted	Warning
Backup Completed	Information

Event name	Severity
Backup Failed	Error
Host Discovered	Information
Relationship Create Aborted	Warning
Relationship Create Completed	Information
Relationship Create Failed	Error
Relationship Delete Aborted	Warning
Relationship Delete Completed	Information
Relationship Delete Failed	Error
Relationship Discovered	Information
Relationship Modified	Information
Replica Date OK	Normal
Replica Nearly Out of Date	Warning
Replica Out of Date	Error
Restore Aborted	Warning
Restore Completed	Normal
Restore Failed	Error

SNMP Trap Listener

Event name	Severity
Alert Trap Received	Information
Critical Trap Received	Information
Emergency Trap Received	Information
Error Trap Received	Information
Information Trap Received	Information
Notification Trap Received	Information
Warning Trap Received	Information
Start Failed	Warning
Start OK	Information

Space Management

Event name	Severity
Space Management Job Started	Information
Space Management Job Succeeded	Information
Space Management Job Failed	Information

Storage Services

Event name	Severity
Storage Service Created	Information
Storage Service Modified	Information
Storage Service Destroyed	Information
Storage Service Dataset Provisioned	Information
Storage Service Dataset Attached	Information
Storage Service Dataset Detached	Information

Sync

Event name	Severity
SnapMirror In Sync	Information
SnapMirror Out of Sync	Warning

Temperature

Event name	Severity
Hot	Critical
Normal	Normal

Unprotected Item

Event name	Severity
Discovered	Information

User

Event name	Severity
Disk Space Quota Almost Full	Warning
Disk Space Quota Full	Error
Disk Space Quota OK	Normal
Disk Space Soft Limit Exceeded	Warning
Disk Space Soft Limit Not Exceeded	Normal
E-mail Address OK	Normal
E-mail Address Rejected	Warning
Files Quota Almost Full	Warning
Files Quota Full	Error
Files Quota Utilization Normal	Normal
Files Soft Limit Exceeded	Warning
Files Soft Limit Not Exceeded	Normal

vFiler Unit

Event name	Severity
Deleted	Information
Discovered	Information
Hosting Storage System Login Failed	Warning
IP Address Added	Information
IP Address Removed	Information
Renamed	Information
Storage Unit Added	Information
Storage Unit Removed	Information

vFiler Unit Template

Event name	Severity
Created	Information

Event name	Severity
Deleted	Information
Modified	Information

Vserver

Event name	Severity
Vserver Discovered	Information
Vserver Deleted	Information
Vserver Renamed	Information
Vserver Status Down	Error
Vserver Status Up	Normal

Volume

Event name	Severity	
Almost Full	Warning	
Automatically Deleted	Information	
Clone Deleted	Information	
Clone Discovered	Information	
Destroyed	Information	
First Snapshot OK	Normal	
Full	Error	
Growth Rate Abnormal	Warning	
Growth Rate OK	Normal	
Maxdirsize Limit Nearly Reached	Information	
Maxdirsize Limit Reached	Information	
Nearly No Space for First Snapshot	Warning	
Nearly Over Deduplicated	Warning	
New Snapshot	Normal	
Next Snapshot Not Possible	Warning	

Event name	Severity	
Next Snapshot Possible	Normal	
No Space for First Snapshot	Warning	
Not Over Deduplicated	Normal	
Offline	Warning	
Offline or Destroyed	Warning	
Online	Normal	
Over Deduplicated	Error	
Quota Almost Overcommitted	Warning	
Quota Overcommitted	Error	
Restricted	Normal	
Snapshot Deleted	Normal	
Space Normal	Normal	
Space Reserve Depleted	Error	
Space Reserve Nearly Depleted	Warning	
Space Reserve OK	Normal	

Copyright and trademark information

Copyright ©1994 - 2012 NetApp, Inc. All rights reserved. Printed in the U.S.A.

Portions copyright © 2012 IBM Corporation. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

No part of this document covered by copyright may be reproduced in any form or by any means— graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

References in this documentation to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's or NetApp's intellectual property rights may be used instead of the IBM or NetApp product, program, or service. Evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM and NetApp, are the user's responsibility.

No part of this document covered by copyright may be reproduced in any form or by any means— graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S.A. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark information

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. A complete and current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

NetApp, the NetApp logo, Network Appliance, the Network Appliance logo, Akorri, ApplianceWatch, ASUP, AutoSupport, BalancePoint, BalancePoint Predictor, Bycast, Campaign Express, ComplianceClock, Cryptainer, CryptoShred, Data ONTAP, DataFabric, DataFort, Decru, Decru DataFort, DenseStak, Engenio, Engenio logo, E-Stack, FAServer, FastStak, FilerView, FlexCache, FlexClone, FlexPod, FlexScale, FlexShare, FlexSuite, FlexVol, FPolicy, GetSuccessful, gFiler, Go further, faster, Imagine Virtually Anything, Lifetime Key Management, LockVault, Manage ONTAP, MetroCluster, MultiStore, NearStore, NetCache, NOW (NetApp on the Web), Onaro, OnCommand, ONTAPI, OpenKey, PerformanceStak, RAID-DP, ReplicatorX, SANscreen, SANshare, SANtricity, SecureAdmin, SecureShare, Select, Service

Builder, Shadow Tape, Simplicity, Simulate ONTAP, SnapCopy, SnapDirector, SnapDrive, SnapFilter, SnapLock, SnapManager, SnapMigrator, SnapMirror, SnapMover, SnapProtect, SnapRestore, Snapshot, SnapSuite, SnapValidator, SnapVault, StorageGRID, StoreVault, the StoreVault logo, SyncMirror, Tech OnTap, The evolution of storage, Topio, vFiler, VFM, Virtual File Manager, VPolicy, WAFL, Web Filer, and XBB are trademarks or registered trademarks of NetApp, Inc. in the United States, other countries, or both.

All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.

NetApp, Inc. is a licensee of the CompactFlash and CF Logo trademarks.

NetApp, Inc. NetCache is certified RealSystem compatible.

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe on any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, N.Y. 10504-1785 U.S.A.

For additional information, visit the web at: http://www.ibm.com/ibm/licensing/contact/

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM web sites are provided for convenience only and do not in any manner serve as an endorsement of those web sites. The materials at those web sites are not part of the materials for this IBM product and use of those web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

Index definition of 13 how to use 17 administrator roles migration overview 19 table 147 deduplication defined 25 process overview 26 \mathbf{C} disaster recovery configuring datasets for 24, 25 cleanup definition of 22 after offline migration 48 nonsupport of Data ONTAP vFiler units 22 of an online migration 57 policies, defined 14 credentials, defined 16 terminology 22 cutover disaster recovery example automated during online migration 54 assign protection policy 107 during offline migration 47 configuration assumptions 98, 99 configure hosts 99 D create dataset 106 create failover script 101 dashboards 21 create protection policy 104 data management create resource pools 100 change implementation 20 fail over 110 concepts 13 failback manually 112 discovering data 18 perform unscheduled update 110 simplified 17 prepare for recovery 111 using datasets 17 setup 96 data protection capability strategy 97 definition of 12 test failover script 109 dataset offline migration example verify disaster recovery protection 108 adding physical resources 45 assumptions 43, 44 \mathbf{E} cleaning up the migration 48 cutting over to new storage system 47 events manually deleting the old IPspace and VLAN 49 list of, complete 149-155, 157-172 setup 41 starting the migration 45 strategy 42, 43 F updating SnapMirror relationships 46 dataset online migration example failback adding physical resources 54 defined 22 assumptions 51-53 failover cleaning up the migration 57 defined 22 manually finishing an online migration cleanup 58 readiness, defined 22 rolling back an online migration 56 script, defined 22 setup 50 state, defined 22 starting the online migration and cutover 54 datasets

configuring for disaster recovery 24, 25

I	assign policy 81
	configuration assumptions 61–63
IPspace	configure alarms 84
deleting after offline migration 49	configure host storage 64
deleting after online migration 58	create datasets 80
	create groups 78
M	create policy 71
	create resource pools 66
Management console provisioning capability	evaluate policy settings for backup node 75
defined 11	evaluate policy settings for mirror connection 76
migration	import relationships 82
overview 19	schedules, determine for backup connection 69
See dataset offline migration example 41	schedules, determine for mirror connection 70
monitoring	schedules, determine for primary data node 68
dashboards 21	schedules, evaluate and modify 68
status 21	setup 59
	strategy 60, 61, 87
0	verify protection 83
O	protection policies defined 14
offline migration example	
adding physical resources 45	protection with SnapManager example assign protection policy 141
cleaning up the migration 48	configure secondary backup protection policy 139
cutting over 47	configure secondary backup protection poncy 139 configure secondary backup schedules 138
manually deleting the old IPspace and VLAN 49	configure secondary resource pool 137
setup 41	confirm backup protection using SnapManager 145
starting the migration 45	create database profile 141
strategy 42, 43	create database profile 141 create protected backup using SnapManager 144
updating SnapMirror relationships 46	protected database backup 130
OnCommand console	provision new dataset 143
integration with 12, 13	restore backups using SnapManager 145
online migration	schedule strategy 134
See online migration example 50	storage configuration 131
online migration example	summary of tasks 135
adding physical resources 54	target database details 130
assumptions 51–53	provisioning
cleaning up the migration 57	monitoring 21
manually finishing an online migration cleanup 58	overview of Management Console capabilities 18,
rolling back an online migration 56	19
setup 50	provisioning and protection example, NAS
starting the online migration and cutover 54	configuration assumptions 88, 89
	configure host storage 90
P	create provisioning policies 93
1	create resource pools 92
policies	setup 85
consistency and conformance 16	strategy 60, 61, 86, 87
types of 14	provisioning example, SAN
protection	configuration assumptions 30–32
monitoring 21	configure host storage 33
protection example	create a dataset and provision a LUN 39

create provisioning policy 38	configuring with Management console 137		
create resource pool 34	SnapMirror relationship break, definition of 22		
create vFiler template 35	status monitoring 21		
create vFiler unit 36	storage services		
setup 27	change implementation 20		
strategy 28–30	consistency and conformance 16		
provisioning policies	creating multiple datasets 125		
defined 14	example basic level creation 121		
	example dataset attachment 124		
Q	example dataset creation 122		
Qtree SnapMirror, definition of 22	example high level service creation 119		
Quee Shapiwhitor, definition of 22	example mid-level storage creation 120		
R	example of vFiler unit creation based on vFiler		
	template 125		
RBAC	example service levels 115		
how RBAC is used 26	workflow assumptions 117, 118		
RBAC (role-based access control)	•		
table of roles 147	T 7		
rebaselining, definition of 22	V		
resource management, simplified 17	vFiler templates		
resource pools	example use with storage services 125		
adding physical resources 45	vFiler units		
adding physical resources as online migration	Data ONTAP-managed disaster recovery 22		
destinations 54	defined 15		
defined 14	migration overview 19		
roles, administrator (RBAC)	VLAN		
table of 147	deleting after offline migration 49		
rollback	deleting after online migration 58		
of an online migration 56	Volume SnapMirror, definition of 22		
S	1		
S			
secondary resource pool			

IBW.

NA 210-05551_A0, Printed in USA

GA32-1017-01

